Skip to main content

2024 | OriginalPaper | Buchkapitel

Reconstruction of Boundary Conditions of a Parabolic-Hyperbolic Transmission Problem

verfasst von : Miglena N. Koleva, Lubin G. Vulkov

Erschienen in: New Trends in the Applications of Differential Equations in Sciences

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We consider a special kind of interface partial differential equations problems, which solution is defined in a few disjoint distant domains, where the effect of the intermediate region (layer) is modeled by means of nonlocal jump conditions across the layer. Our aim is the numerical identification of external boundary conditions for parabolic-hyperbolic problems on disjoint domains from given point data. We develop decomposition techniques to obtain exact formulas for the unknown boundary conditions. A number of numerical examples are discussed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Al-Droubi A., Renardy M.: Energy methods for a parabolic-hyperbolic interface problem arising in electromagnetism, Z. Angew. Math. Phys., 1988, 39(6), 931–936. Al-Droubi A., Renardy M.: Energy methods for a parabolic-hyperbolic interface problem arising in electromagnetism, Z. Angew. Math. Phys., 1988, 39(6), 931–936.
2.
Zurück zum Zitat Berres S., Bürger R., Karlsen K.H., Tory E.M.: Strongly degenerate parabolic-hyperbolic systems modeling polydisperse sedimentation with compression, SIAM J. Appl. Math., 2003, 64(1), 41–80. Berres S., Bürger R., Karlsen K.H., Tory E.M.: Strongly degenerate parabolic-hyperbolic systems modeling polydisperse sedimentation with compression, SIAM J. Appl. Math., 2003, 64(1), 41–80.
3.
Zurück zum Zitat Bouziani A.: Solution of a transmission problem for semilinear parabolic-hyperbolic equations by the timediscretization method, J. Appl. Math. Stoch. Anal., 2006, 61439. Bouziani A.: Solution of a transmission problem for semilinear parabolic-hyperbolic equations by the timediscretization method, J. Appl. Math. Stoch. Anal., 2006, 61439.
4.
Zurück zum Zitat Cao Y., Yin J., Liu Q., Li M.: A class of nonlinear parabolic-hyperbolic equations applied to image restoration, Nonlin. Anal. Real World Appl., 2010, 11(1), 253–261. Cao Y., Yin J., Liu Q., Li M.: A class of nonlinear parabolic-hyperbolic equations applied to image restoration, Nonlin. Anal. Real World Appl., 2010, 11(1), 253–261.
5.
Zurück zum Zitat Datta, A.K.: Biological and Bioenvironmental Heat and Mass Transfer, 1st ed; Marcel Dekker: New York, 2002, 424p. Datta, A.K.: Biological and Bioenvironmental Heat and Mass Transfer, 1st ed; Marcel Dekker: New York, 2002, 424p.
6.
Zurück zum Zitat D. Govoli: Exact representations on artificial interfaces and applications in mechanics, Appl. Mech. Rev. 52(11), 333–349 (1999). D. Govoli: Exact representations on artificial interfaces and applications in mechanics, Appl. Mech. Rev. 52(11), 333–349 (1999).
7.
Zurück zum Zitat Milovanović Jeknić, Z.: Parabolic-hyperbolic transmission problem in disjoint domains, Filomat 32(20), 6911–6920 (2018). Milovanović Jeknić, Z.: Parabolic-hyperbolic transmission problem in disjoint domains, Filomat 32(20), 6911–6920 (2018).
8.
Zurück zum Zitat Jovanović, B.S., Vulkov, L.G.: Analysis and numerical approximation of a parabolic-hyperbolic transmission problem, Centr. Eur. J. Math. 10, 73–84 (2012). Jovanović, B.S., Vulkov, L.G.: Analysis and numerical approximation of a parabolic-hyperbolic transmission problem, Centr. Eur. J. Math. 10, 73–84 (2012).
9.
Zurück zum Zitat Jovanović, B.S., Vulkov, L.G.: Numerical solution of a two-dimensional hyperbolic transmission problem, J. Comput. Appl. Math. 235 (2010) 519–534. Jovanović, B.S., Vulkov, L.G.: Numerical solution of a two-dimensional hyperbolic transmission problem, J. Comput. Appl. Math. 235 (2010) 519–534.
10.
Zurück zum Zitat Hasanoglu, A., Romanov, V.G.: Introduction to Inverse Problems for Differential Equations, 1st ed Springer Cham, 2017, 261p. Hasanoglu, A., Romanov, V.G.: Introduction to Inverse Problems for Differential Equations, 1st ed Springer Cham, 2017, 261p.
11.
Zurück zum Zitat Kabanikhin, S.I.: Inverse and Ill-Posed Problems, DeGruyer, Berlin, 2011. Kabanikhin, S.I.: Inverse and Ill-Posed Problems, DeGruyer, Berlin, 2011.
12.
Zurück zum Zitat Koleva, M.N., Vulkov, L.G.: Numerical identification of external boundary conditions for time fractional parabolic equations on disjoint domains. Fractal Fract. 2023, 7, 326. Koleva, M.N., Vulkov, L.G.: Numerical identification of external boundary conditions for time fractional parabolic equations on disjoint domains. Fractal Fract. 2023, 7, 326.
13.
Zurück zum Zitat Koleva, M.N., Milovanovic Jeknic, Z.D., Vulkov, L.G.: Determination of external boundary conditions of a stationary nonlinear problem on disjoint intervals at point observation, Studies in Computational Intelligence, 2023, accepted. Koleva, M.N., Milovanovic Jeknic, Z.D., Vulkov, L.G.: Determination of external boundary conditions of a stationary nonlinear problem on disjoint intervals at point observation, Studies in Computational Intelligence, 2023, accepted.
14.
Zurück zum Zitat Korzyuk, V.I.: A conjugacy problem for equations of hyperbolic and parabolic types, Differentsial’nye Uravneniya 4(10), 1854–1866 (1968). Korzyuk, V.I.: A conjugacy problem for equations of hyperbolic and parabolic types, Differentsial’nye Uravneniya 4(10), 1854–1866 (1968).
15.
Zurück zum Zitat Lesnic, D.: Inverse Problems with Applications in Science and Engineering, CRC Pres, Abingdon UK, 2021, p. 349. Lesnic, D.: Inverse Problems with Applications in Science and Engineering, CRC Pres, Abingdon UK, 2021, p. 349.
16.
Zurück zum Zitat Lions, J.L., Un exemple de probleme aux limites couple parabolique-hyperbolique pour une structure pluri-dimensionnelle. Calcolo 22, 7–15 (1985). Lions, J.L., Un exemple de probleme aux limites couple parabolique-hyperbolique pour une structure pluri-dimensionnelle. Calcolo 22, 7–15 (1985).
17.
Zurück zum Zitat Mascia, C., Porretta, A., Terracina, A.: Nonhomogeneous Dirichlet problems for degenerate parabolic-hyperbolic equations. Arch. Rational Mech. Anal. 163, 87–124 (2002). Mascia, C., Porretta, A., Terracina, A.: Nonhomogeneous Dirichlet problems for degenerate parabolic-hyperbolic equations. Arch. Rational Mech. Anal. 163, 87–124 (2002).
18.
Zurück zum Zitat Qin, Y.: Nonlinear parabolic-hyperbolic coupled systems and their attractors, Oper. Theory Adv. Appl., 184, Birkhuser, Basel, 2008. Qin, Y.: Nonlinear parabolic-hyperbolic coupled systems and their attractors, Oper. Theory Adv. Appl., 184, Birkhuser, Basel, 2008.
19.
Zurück zum Zitat Samarskii, A.A., Vabishchevich, P.N.: Numerical Methods for Solving Inverse Problems of Mathematical Physics, de Gruyter, 2007, 452 p. Samarskii, A.A., Vabishchevich, P.N.: Numerical Methods for Solving Inverse Problems of Mathematical Physics, de Gruyter, 2007, 452 p.
20.
Zurück zum Zitat Samarskii, A.A., Vabishchevich, P.N., Lemeshchevskii, S.V., Matus, P.P.: Difference schemes for the problem of coupling equations of hyperbolic and parabolic types, Siberian Mathematical Journal, 39(4), 954–962 (1998) (In Russian). Samarskii, A.A., Vabishchevich, P.N., Lemeshchevskii, S.V., Matus, P.P.: Difference schemes for the problem of coupling equations of hyperbolic and parabolic types, Siberian Mathematical Journal, 39(4), 954–962 (1998) (In Russian).
21.
Zurück zum Zitat Tory, E.M., Karlsen K.H, Burger, R., Berres, S.: Strongly degenerate parabolic-hyperbolic systems modeling polydisperse sedimentation with compression, SIAM J. Appl. Math. 64(1), 41–80 (2003). Tory, E.M., Karlsen K.H, Burger, R., Berres, S.: Strongly degenerate parabolic-hyperbolic systems modeling polydisperse sedimentation with compression, SIAM J. Appl. Math. 64(1), 41–80 (2003).
Metadaten
Titel
Reconstruction of Boundary Conditions of a Parabolic-Hyperbolic Transmission Problem
verfasst von
Miglena N. Koleva
Lubin G. Vulkov
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-53212-2_38