Skip to main content

2024 | OriginalPaper | Buchkapitel

Reconstruction of the Time-Dependent Diffusion Coefficient in a Space-Fractional Parabolic Equation

verfasst von : Miglena N. Koleva, Lubin G. Vulkov

Erschienen in: New Trends in the Applications of Differential Equations in Sciences

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We propose two algorithms for investigation the numerical reconstruction of the time-dependent diffusion coefficient in a space-fractional parabolic problem at integral and point measured outputs. In the first one, by implicit Euler method we perform a linearization of the quadratically nonlinear initial boundary value problem on each time level. Then, we apply a decomposition to this problem solution around the unknown diffusion coefficient. Finally, using the integral or point observations we express in exact form by the solutions of the new subproblems, the required diffusion coefficient. By the second one, on each time level, an iterative algorithm based on the secant method for the numerical identification of the diffusion coefficient, is proposed. We compare the two methods on computational test examples.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ali, M., Malik, S.A.: An inverse problem for a family of time fractional diffusion equation, Inverse Problems in Science and Engineering 25(9), 1299–1322 (2017). Ali, M., Malik, S.A.: An inverse problem for a family of time fractional diffusion equation, Inverse Problems in Science and Engineering 25(9), 1299–1322 (2017).
2.
Zurück zum Zitat Ali, M., Aziz, M., Malik, S.A.: On the recovery of a time dependent diffusion coefficient for a space fractional diffusion equation. Anal. Math. Phys. 11, 103 (2021). Ali, M., Aziz, M., Malik, S.A.: On the recovery of a time dependent diffusion coefficient for a space fractional diffusion equation. Anal. Math. Phys. 11, 103 (2021).
3.
Zurück zum Zitat Cannon, J.R., Rundell, W: Recovering a time dependent coefficient in a parabolic differential equation, Journal of Mathematical Analysis and Applications 160(2), 572–582 (1991). Cannon, J.R., Rundell, W: Recovering a time dependent coefficient in a parabolic differential equation, Journal of Mathematical Analysis and Applications 160(2), 572–582 (1991).
4.
Zurück zum Zitat Hasanoglu, A., Romanov, V.G.: Introduction to Inverse Problems for Differential Equations, 1st ed Springer Cham, 2017, 261 p. Hasanoglu, A., Romanov, V.G.: Introduction to Inverse Problems for Differential Equations, 1st ed Springer Cham, 2017, 261 p.
5.
Zurück zum Zitat Hussein, M.S., Lesnic, D., Ismailov, M.I.: An inverse problem of finding the time-dependent diffusion coefficient from an integral condition, Math. Meth in Appl. Sci. 39(5), 963–980 (2016). Hussein, M.S., Lesnic, D., Ismailov, M.I.: An inverse problem of finding the time-dependent diffusion coefficient from an integral condition, Math. Meth in Appl. Sci. 39(5), 963–980 (2016).
6.
Zurück zum Zitat Kabanikhin, S.I.: Inverse and Ill-Posed Problems, DeGruyer, Berlin, 2011. Kabanikhin, S.I.: Inverse and Ill-Posed Problems, DeGruyer, Berlin, 2011.
7.
Zurück zum Zitat Kanca, F., Ismailov, M. I.: The inverse problem of finding the time-dependent diffusion coefficient of the heat equation from integral overdetermination data, Inverse Problems in Science and Engineering 20(4), 463–476 (2012). Kanca, F., Ismailov, M. I.: The inverse problem of finding the time-dependent diffusion coefficient of the heat equation from integral overdetermination data, Inverse Problems in Science and Engineering 20(4), 463–476 (2012).
8.
Zurück zum Zitat Kandilarov, J.D., Valkov, R.L.: A numerical approach for the American call option pricing model. In: Dimov, I., Dimova, S., Kolkovska, N. (eds) Numerical Methods and Applications. NMA 2010. Lecture Notes in Computer Science, 6046. Springer, Berlin, Heidelberg, 453–460 (2011). Kandilarov, J.D., Valkov, R.L.: A numerical approach for the American call option pricing model. In: Dimov, I., Dimova, S., Kolkovska, N. (eds) Numerical Methods and Applications. NMA 2010. Lecture Notes in Computer Science, 6046. Springer, Berlin, Heidelberg, 453–460 (2011).
9.
Zurück zum Zitat Lesnic, D.: Inverse Problems with Applications in Science and Engineering, CRC Pres, Abingdon UK, 2021, p. 349. Lesnic, D.: Inverse Problems with Applications in Science and Engineering, CRC Pres, Abingdon UK, 2021, p. 349.
10.
Zurück zum Zitat Lesnic, D., Yousefi, S.A., Ivanchov, M.: Determination of a time-dependent diffusivity from nonlocal conditions. J. Appl. Math. Comput. 41, 301–320 (2013). Lesnic, D., Yousefi, S.A., Ivanchov, M.: Determination of a time-dependent diffusivity from nonlocal conditions. J. Appl. Math. Comput. 41, 301–320 (2013).
11.
Zurück zum Zitat Liu, F., Zhuang, P., Burrage, K.: Numerical methods and analysis for a class of fractional advection-dispersion model, Computers and Mathematics with Applications 64, 2990–3007 (2012). Liu, F., Zhuang, P., Burrage, K.: Numerical methods and analysis for a class of fractional advection-dispersion model, Computers and Mathematics with Applications 64, 2990–3007 (2012).
12.
Zurück zum Zitat Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for fractional advection-dispersion flow equations, Journal of Computational and Applied Mathematics 172(1), 65–77 (2004). Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for fractional advection-dispersion flow equations, Journal of Computational and Applied Mathematics 172(1), 65–77 (2004).
13.
Zurück zum Zitat Moyano, E.A., Scarpettini, A.F.: Numerical stability study and error estimation for two implicit schemes in a moving boundary problem, Numer. Meth, for PDE 16(1), 42–61 (2000). Moyano, E.A., Scarpettini, A.F.: Numerical stability study and error estimation for two implicit schemes in a moving boundary problem, Numer. Meth, for PDE 16(1), 42–61 (2000).
14.
Zurück zum Zitat Ray, S.S.: Analytical solution for the space fractional diffusion equation by two-step Adomian decomposition method, Commun. Nonlinear Sci. Numer. Simul. 14 (4), 1295–1306 (2009). Ray, S.S.: Analytical solution for the space fractional diffusion equation by two-step Adomian decomposition method, Commun. Nonlinear Sci. Numer. Simul. 14 (4), 1295–1306 (2009).
15.
Zurück zum Zitat Samarskii, A.A., Vabishchevich, P.N.: Numerical Methods for Solving Inverse Problems of Mathematical Physics, de Gruyter, 2007, 452 p. Samarskii, A.A., Vabishchevich, P.N.: Numerical Methods for Solving Inverse Problems of Mathematical Physics, de Gruyter, 2007, 452 p.
16.
Zurück zum Zitat Schumer, R., Benson, D.A., Meerschaert, M.M., Wheatcraft, S.W.: Eulerian derivation of the fractional advection- dispersion equation, J. Contaminant Hydrol. 48, 69–88 (2001). Schumer, R., Benson, D.A., Meerschaert, M.M., Wheatcraft, S.W.: Eulerian derivation of the fractional advection- dispersion equation, J. Contaminant Hydrol. 48, 69–88 (2001).
17.
Zurück zum Zitat Schumer, R., Benson, D.A., Meerschaert, M.M., Baeumer, B.: Multiscaling fractional advection-dispersion equations and their solutions, Water Resour. Res. 39, 1022–1032 (2003). Schumer, R., Benson, D.A., Meerschaert, M.M., Baeumer, B.: Multiscaling fractional advection-dispersion equations and their solutions, Water Resour. Res. 39, 1022–1032 (2003).
18.
Zurück zum Zitat Šišková, K., Slodička, M.: Recognition of a time-dependent source in a time-fractional wave equation, Applied Numerical Mathematics 121, 1–17 (2017). Šišková, K., Slodička, M.: Recognition of a time-dependent source in a time-fractional wave equation, Applied Numerical Mathematics 121, 1–17 (2017).
19.
Zurück zum Zitat Nguyen Huy Tuan, Kirane, M., Hoan, L. V. C., Long, Le D.: Identification and regularization for unknown source for a time-fractional diffusion equation, Computers & Mathematics with Applications 73(6), 931–950 (2017). Nguyen Huy Tuan, Kirane, M., Hoan, L. V. C., Long, Le D.: Identification and regularization for unknown source for a time-fractional diffusion equation, Computers & Mathematics with Applications 73(6), 931–950 (2017).
20.
Zurück zum Zitat Zhang, Y., Benson, D.A., Reeves, D.M.: Time and space nonlocalities underlying fractional-derivative models: Distinction and literature review of field applications, Advances in Water Resources 32, 561–581 (2009). Zhang, Y., Benson, D.A., Reeves, D.M.: Time and space nonlocalities underlying fractional-derivative models: Distinction and literature review of field applications, Advances in Water Resources 32, 561–581 (2009).
Metadaten
Titel
Reconstruction of the Time-Dependent Diffusion Coefficient in a Space-Fractional Parabolic Equation
verfasst von
Miglena N. Koleva
Lubin G. Vulkov
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-53212-2_23