Skip to main content
Erschienen in: Measurement Techniques 3/2020

21.07.2020 | GENERAL PROBLEMS OF METROLOGY AND MEASUREMENT TECHNIQUE

Recovery of Characteristics of Non-Stationary Dynamic Systems from Three Test Signals

verfasst von: I. V. Boikov, N. P. Krivulin

Erschienen in: Measurement Techniques | Ausgabe 3/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Non-stationary continuous and discrete dynamical systems are modeled, respectively, by Volterra integral equations of the first kind and their discrete analogues. Algorithms for the exact restoration of the impulse response (in analytical form) for continuous systems and the transient characteristic for discrete systems are constructed. We study an algorithm for the exact restoration of the impulse response of a non-stationary continuous dynamic system from three interconnected input signals. It is shown that the first signal can be arbitrary, and the second and third signals are connected by a first integral operator. The dynamic characteristic is chosen to be the exact Laplace transform formula of the impulse response, represented by an algebraic expression from the Laplace transform of the system output signals. A model example illustrating the performance of the presented algorithm is given. The practical application of the presented algorithm is discussed. An algorithm is also constructed for the exact restoration of the transient response of a non-stationary discrete dynamic system from three input signals that are interconnected. It is shown that the first signal can be arbitrary, and the second and third signals are associated with the first summation operator. We present the exact formula for the Z-transform of the transient response, which is represented by an algebraic expression from the Z-transform of the system output signals. A model example is given. The dynamic systems to which the proposed algorithms can be extended are described.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat K. A. Pupkov, N. D. Egupov, A. I. Barkin, et al., Methods of the Classical and Modern Theory of Automatic Control, Vol. 1, Mathematical Models, Dynamic Characteristics and Analysis of Automatic Control Systems, Izd. MGTU im. Baumana, Moscow (2004). K. A. Pupkov, N. D. Egupov, A. I. Barkin, et al., Methods of the Classical and Modern Theory of Automatic Control, Vol. 1, Mathematical Models, Dynamic Characteristics and Analysis of Automatic Control Systems, Izd. MGTU im. Baumana, Moscow (2004).
2.
Zurück zum Zitat K. A. Pupkov, N. D. Egupov, and A. I. Trofimov, Methods of the Classical and Modern Theory of Automatic Control, Vol. 2, Statistical Dynamics and Identification of Automatic Control Systems, Izd. MGTU im. Baumana, Moscow (2004). K. A. Pupkov, N. D. Egupov, and A. I. Trofimov, Methods of the Classical and Modern Theory of Automatic Control, Vol. 2, Statistical Dynamics and Identification of Automatic Control Systems, Izd. MGTU im. Baumana, Moscow (2004).
3.
Zurück zum Zitat A. M. Deich, Methods of Identification of Dynamic Objects, Energiya, Moscow (1979). A. M. Deich, Methods of Identification of Dynamic Objects, Energiya, Moscow (1979).
4.
Zurück zum Zitat V. A. Granovsky, Dynamic Measurements, Energoatomizdat (1984). V. A. Granovsky, Dynamic Measurements, Energoatomizdat (1984).
5.
Zurück zum Zitat L. Ljung, System Identification. Theory for the User, PTR Prentice Hall, Upper Saddle River (1999), 2nd ed. L. Ljung, System Identification. Theory for the User, PTR Prentice Hall, Upper Saddle River (1999), 2nd ed.
6.
Zurück zum Zitat Ya. Z. Tsypkin, Information Theory of Identifi cation, Nauka, Moscow (1995). Ya. Z. Tsypkin, Information Theory of Identifi cation, Nauka, Moscow (1995).
7.
Zurück zum Zitat I. V. Boikov and N. P. Krivulin, Analytical and Numerical Methods for Identifying Dynamic Systems, Izd. PSU, Penza (2016). I. V. Boikov and N. P. Krivulin, Analytical and Numerical Methods for Identifying Dynamic Systems, Izd. PSU, Penza (2016).
8.
Zurück zum Zitat I. V. Boikov, “On a method for determining dynamic characteristics when using a real test signal,” Izmer. Tekhn., No. 1, 9–10 (1991). I. V. Boikov, “On a method for determining dynamic characteristics when using a real test signal,” Izmer. Tekhn., No. 1, 9–10 (1991).
9.
Zurück zum Zitat I. V. Boikov, “On the identification of nonlinear objects,” Izmer. Tekhn., No. 9, 12–14 (1994). I. V. Boikov, “On the identification of nonlinear objects,” Izmer. Tekhn., No. 9, 12–14 (1994).
10.
Zurück zum Zitat I. V. Boikov, “On the identification of nonlinear systems with delay,” Izmer. Tekhn., No. 4, 14–15 (1995). I. V. Boikov, “On the identification of nonlinear systems with delay,” Izmer. Tekhn., No. 4, 14–15 (1995).
11.
Zurück zum Zitat I. V. Boikov and N. P. Krivulin, “Reconstruction of the parameters of linear systems described by differential equations with variable coefficients,” Izmer. Tekhn., No. 4, 11–14 (2013). I. V. Boikov and N. P. Krivulin, “Reconstruction of the parameters of linear systems described by differential equations with variable coefficients,” Izmer. Tekhn., No. 4, 11–14 (2013).
12.
Zurück zum Zitat D. N. Sidorov, Methods of Analysis of Integrated Dynamic Models: Theory and Applications, Izd. IGU, Irkutsk (2013). D. N. Sidorov, Methods of Analysis of Integrated Dynamic Models: Theory and Applications, Izd. IGU, Irkutsk (2013).
13.
Zurück zum Zitat F. J. Doyle, R. K. Pearson, and B. A. Ogunnaike, Identification and Control Using Volterra Models, Springer-Verlag (2012). F. J. Doyle, R. K. Pearson, and B. A. Ogunnaike, Identification and Control Using Volterra Models, Springer-Verlag (2012).
14.
Zurück zum Zitat V. S. Sizikov, Mathematical Methods for Processing Measurement Results, Polytekhnika, St. Petersburg (2001). V. S. Sizikov, Mathematical Methods for Processing Measurement Results, Polytekhnika, St. Petersburg (2001).
15.
Zurück zum Zitat A. O. Vatulyan, Inverse Problems in the Mechanics of a Deformable Body, FIZMATLIT, Moscow (2007). A. O. Vatulyan, Inverse Problems in the Mechanics of a Deformable Body, FIZMATLIT, Moscow (2007).
16.
Zurück zum Zitat S. I. Kabanikhin, Inverse and Ill-Posed Problems, Sib. Nauchn. Izd., Novosibirsk (2009). S. I. Kabanikhin, Inverse and Ill-Posed Problems, Sib. Nauchn. Izd., Novosibirsk (2009).
17.
Zurück zum Zitat R. Isermann and M. Munchof, Identification of Dynamical Systems: An Introduction with Applications, Springer- Verlag (2011). R. Isermann and M. Munchof, Identification of Dynamical Systems: An Introduction with Applications, Springer- Verlag (2011).
18.
Zurück zum Zitat A. Hasanov Hasanoğlu and V. G. Romanov, Introduction to Inverse Problems for Differential Equations, Springer Int. Publ., Cham (2017).CrossRef A. Hasanov Hasanoğlu and V. G. Romanov, Introduction to Inverse Problems for Differential Equations, Springer Int. Publ., Cham (2017).CrossRef
19.
Zurück zum Zitat I. V. Boikov and N. P. Krivulin, “Determination of temporal characteristics of linear systems with distributed parameters,” Metrologiya, No. 8, 3–14 (2012). I. V. Boikov and N. P. Krivulin, “Determination of temporal characteristics of linear systems with distributed parameters,” Metrologiya, No. 8, 3–14 (2012).
20.
Zurück zum Zitat V. I. Krylov and N. S. Skoblya, Methods for the Approximate Fourier Transform and Inversion of the Laplace Transform (reference book), Nauka, Moscow (1974). V. I. Krylov and N. S. Skoblya, Methods for the Approximate Fourier Transform and Inversion of the Laplace Transform (reference book), Nauka, Moscow (1974).
21.
Zurück zum Zitat M. A. Shcherbakov, “An iterative method of optimal nonlinear image filtering,” Izv. VUZ, Povolzh. Region, Tekhn. Nauki, No. 4 (20), 43–56 (2011). M. A. Shcherbakov, “An iterative method of optimal nonlinear image filtering,” Izv. VUZ, Povolzh. Region, Tekhn. Nauki, No. 4 (20), 43–56 (2011).
Metadaten
Titel
Recovery of Characteristics of Non-Stationary Dynamic Systems from Three Test Signals
verfasst von
I. V. Boikov
N. P. Krivulin
Publikationsdatum
21.07.2020
Verlag
Springer US
Erschienen in
Measurement Techniques / Ausgabe 3/2020
Print ISSN: 0543-1972
Elektronische ISSN: 1573-8906
DOI
https://doi.org/10.1007/s11018-020-01766-4

Weitere Artikel der Ausgabe 3/2020

Measurement Techniques 3/2020 Zur Ausgabe