Skip to main content

2024 | OriginalPaper | Buchkapitel

24. Recovery of Critical Metals from Mine Tailings

verfasst von : Alina Butu, Paula V. Morais, Marian Butu, Sorin Avram, Steliana Rodino

Erschienen in: Constraints and Opportunities in Shaping the Future: New Approaches to Economics and Policy Making

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The availability of primary resources correlated with waste production from exploration and mining activities will remain a need to satisfy the growing global demand for raw materials. The present research started with the idea that tailings and wastes from mining can be considered mineral reserves. The project aimed to increase the efficiency of resources through the recycling of residues and their integration into a circular economy concept. Special emphasis is placed on processing mine tailings to turn them into a valuable source of secondary raw materials. This is an important step toward sustainability and reducing the negative impact on the environment. This chapter presents the objectives targeted by the REVIVING research project. Therefore, the aim was to obtain improved models for efficiently recycling metals from residues in selected case study mines, based, for the first time, on the manipulation of the microbiome existing within autochthonous tailings, using molecular data to promote the bioleaching bacterial populations, and innovative hydrometallurgy, using negative pressure. The study aimed to cover the entire cycle of obtaining metals, from secondary sources to the production of a marketable product. It also aimed to enable the efficient recycling of tailings and reduce the residues generated by the mining process, thus contributing to the reconnection of raw materials to society. The ultimate goal of the project was to find alternative sources of critical metals, as these are vulnerable to disruption of supply because their core source is restricted to just one or two regions of the world, and they are difficult to substitute within the specific technologies that use them, being vital raw materials in various new and green emerging industrial processes.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Auerbach, R., Bokelmann, K., Stauber, R., Gutfleisch, O., Schnell, S., & Ratering, S. (2019). Critical raw materials – advanced recycling technologies and processes: Recycling of rare earth metals out of end of life magnets by bioleaching with various bacteria as an example of an intelligent recycling strategy. Minerals Engineering, 134(April), 104–117.CrossRef Auerbach, R., Bokelmann, K., Stauber, R., Gutfleisch, O., Schnell, S., & Ratering, S. (2019). Critical raw materials – advanced recycling technologies and processes: Recycling of rare earth metals out of end of life magnets by bioleaching with various bacteria as an example of an intelligent recycling strategy. Minerals Engineering, 134(April), 104–117.CrossRef
Zurück zum Zitat European Commission. (2017). Communication from the Commission to The European Parliament, The Council, The European Economic and Social Committee and The Committee of The Regions on the 2017 List of Critical Raw Materials for the EU. Brussels. European Commission. (2017). Communication from the Commission to The European Parliament, The Council, The European Economic and Social Committee and The Committee of The Regions on the 2017 List of Critical Raw Materials for the EU. Brussels.
Zurück zum Zitat European Commission. (2020a). Critical raw materials resilience: Charting a path towards greater security and sustainability. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions, COM (2020) 474 Final; European Commission. European Commission. (2020a). Critical raw materials resilience: Charting a path towards greater security and sustainability. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions, COM (2020) 474 Final; European Commission.
Zurück zum Zitat European Commission. (2020b). Critical materials for strategic technologies and sectors in the EU – A foresight study. European Commission. (2020b). Critical materials for strategic technologies and sectors in the EU – A foresight study.
Zurück zum Zitat Figueiredo, J., Vila, M. C., Góis, J., Biju, B., Futuro, A., Martins, D., Dinis, M. L., & Fiúza, A. (2019). Bi-level depth assessment of an abandoned tailings dam aiming its reprocessing for recovery of valuable metals. Minerals Engineering, 133(March), 1–9.CrossRef Figueiredo, J., Vila, M. C., Góis, J., Biju, B., Futuro, A., Martins, D., Dinis, M. L., & Fiúza, A. (2019). Bi-level depth assessment of an abandoned tailings dam aiming its reprocessing for recovery of valuable metals. Minerals Engineering, 133(March), 1–9.CrossRef
Zurück zum Zitat Işıldar, A., Hullebusch, E. D., Lenz, M., Laing, G. D., Marra, A., Cesaro, A., Panda, S., Akcil, A., Kucuker, M. A., & Kuchta, K. (2019). Biotechnological strategies for the recovery of valuable and critical raw materials from Waste Electrical and Electronic Equipment (WEEE) – A review. Journal of Hazardous Materials, 362(January), 467–481.CrossRef Işıldar, A., Hullebusch, E. D., Lenz, M., Laing, G. D., Marra, A., Cesaro, A., Panda, S., Akcil, A., Kucuker, M. A., & Kuchta, K. (2019). Biotechnological strategies for the recovery of valuable and critical raw materials from Waste Electrical and Electronic Equipment (WEEE) – A review. Journal of Hazardous Materials, 362(January), 467–481.CrossRef
Zurück zum Zitat Levett, A., Gleeson, S. A., & Kallmeyera, J. (2021). From exploration to remediation: A microbial perspective for innovation in mining. Earth-Science Reviews, 216, 103563.CrossRef Levett, A., Gleeson, S. A., & Kallmeyera, J. (2021). From exploration to remediation: A microbial perspective for innovation in mining. Earth-Science Reviews, 216, 103563.CrossRef
Zurück zum Zitat Mikoda, B., Potysz, A., & Kmiecik, E. (2019). Bacterial leaching of critical metal values from Polish copper metallurgical slags using Acidithiobacillus Thiooxidans. Journal of Environmental Management, 236(April), 436–445.CrossRef Mikoda, B., Potysz, A., & Kmiecik, E. (2019). Bacterial leaching of critical metal values from Polish copper metallurgical slags using Acidithiobacillus Thiooxidans. Journal of Environmental Management, 236(April), 436–445.CrossRef
Zurück zum Zitat Naseri, T., Bahaloo-Horeh, N., & Mousavi, S. M. (2019). Environmentally friendly recovery of valuable metals from spent coin cells through two-step bioleaching using Acidithiobacillus thiooxidans. Journal of Environmental Management, 235(April), 357–367.CrossRef Naseri, T., Bahaloo-Horeh, N., & Mousavi, S. M. (2019). Environmentally friendly recovery of valuable metals from spent coin cells through two-step bioleaching using Acidithiobacillus thiooxidans. Journal of Environmental Management, 235(April), 357–367.CrossRef
Zurück zum Zitat Srichandan, H., Ranjan, K. M., Parhi, P. K., & Mishra, S. (2019). Bioleaching approach for extraction of metal values from secondary solid wastes: A critical review. Hydrometallurgy, 189(November), 105122.CrossRef Srichandan, H., Ranjan, K. M., Parhi, P. K., & Mishra, S. (2019). Bioleaching approach for extraction of metal values from secondary solid wastes: A critical review. Hydrometallurgy, 189(November), 105122.CrossRef
Zurück zum Zitat Tunsu, C., Menard, Y., Eriksen, D. Ø., Ekberg, C., & Petranikova, M. (2019). Recovery of critical materials from mine tailings: A comparative study of the solvent extraction of rare earths using acidic, solvating and mixed extractant systems. Journal of Cleaner Production, 218, 425–437.CrossRef Tunsu, C., Menard, Y., Eriksen, D. Ø., Ekberg, C., & Petranikova, M. (2019). Recovery of critical materials from mine tailings: A comparative study of the solvent extraction of rare earths using acidic, solvating and mixed extractant systems. Journal of Cleaner Production, 218, 425–437.CrossRef
Zurück zum Zitat Vallero, D. A., & Blight, G. (2019). Mine waste: A brief overview of origins, quantities, and methods of storage. In Waste (pp. 129–151). Elsevier.CrossRef Vallero, D. A., & Blight, G. (2019). Mine waste: A brief overview of origins, quantities, and methods of storage. In Waste (pp. 129–151). Elsevier.CrossRef
Metadaten
Titel
Recovery of Critical Metals from Mine Tailings
verfasst von
Alina Butu
Paula V. Morais
Marian Butu
Sorin Avram
Steliana Rodino
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-47925-0_24

Premium Partner