Skip to main content
Erschienen in: Metallurgical and Materials Transactions A 7/2021

07.05.2021 | Original Research Article

Recovery of Ductility in Ultrafine-Grained Low Carbon Steel Processed by Electropulsing

verfasst von: D. Bhuyan, R. K. Pandey, S. N. Ojha, G. V. S. Sastry, H. Choudhary, A. Sharma, R. Manna

Erschienen in: Metallurgical and Materials Transactions A | Ausgabe 7/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Workpieces of a low carbon steel (LCS) are deformed by equal-channel angular pressing (ECAP) up to an equivalent strain of 6 in their as-received, coarse-grained condition. ECAP of LCS produces an ultrafine-grained (UFG) banded structure of 0.6 μm in width, with a high dislocation density and lattice strain. Though the refinement improves strength significantly, the material suffers from a detrimental low ductility. ECAPed samples are therefore electropulsed to recover the ductility to a large extent. A mechanism, by which a unique microstructure that fecilitates the regainment of ductility, is proposed in this study. Electropulsing (EP) creates additional low angle grain boundaries (LAGBs) by electromigration of dislocations within the grain and leads to the migration of high angle grain boundaries (HAGBs) under high electron wind force. Groups of subgrain boundaries move towards high angle grain boundaries and coalesce, producing a region of relatively lower defect density, i.e., the formation of recrystallized nuclei. On further pulsing, the HAGBs of the recrystallized nuclei continue to migrate and eventually impinge on each other. As a result, a bimodal grain size distribution consisting of micron-sized, near-equiaxed grains that are favorably interspersed with UFG grains occurs, and has a low defect density. The microstructure is clear of any residual strain. Upon electropulsing the strength of ECAPed LCS is marginally traded off for a larger gain in ductility. The micron-sized grains of the bimodal distribution are understood to accommodate larger deformations and enhance the ductility.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Y. Fukuda, K. Oh-Ishi, Z. Horita, and T.G. Langdon: Acta Mater., 2002, vol. 50, pp. 1359–1368.CrossRef Y. Fukuda, K. Oh-Ishi, Z. Horita, and T.G. Langdon: Acta Mater., 2002, vol. 50, pp. 1359–1368.CrossRef
3.
Zurück zum Zitat 3. R. B. Singh, N. K. Mukhopadhyay, G. V. S. Sastry, R. Manna (2017) Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 48:5449-5466CrossRef 3. R. B. Singh, N. K. Mukhopadhyay, G. V. S. Sastry, R. Manna (2017) Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 48:5449-5466CrossRef
4.
Zurück zum Zitat J.T. Wang, C. Xu, Z.Z. Du, G.Z. Qu, and T.G. Langdon: Mater. Sci. Eng A., 2005, vol. 410–411, pp. 312–315.CrossRef J.T. Wang, C. Xu, Z.Z. Du, G.Z. Qu, and T.G. Langdon: Mater. Sci. Eng A., 2005, vol. 410–411, pp. 312–315.CrossRef
5.
Zurück zum Zitat 5. R. Manna, N.K. Mukhopadhyay, G.V.S. Sastry (2008) Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 39:1525-1534CrossRef 5. R. Manna, N.K. Mukhopadhyay, G.V.S. Sastry (2008) Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 39:1525-1534CrossRef
6.
Zurück zum Zitat R. Song, D. Ponge, D. Raabe, J.G. Speer, and D.K. Matlock: Mater. Sci. Eng. A, 2006, vol. 441, pp. 1–17.CrossRef R. Song, D. Ponge, D. Raabe, J.G. Speer, and D.K. Matlock: Mater. Sci. Eng. A, 2006, vol. 441, pp. 1–17.CrossRef
7.
Zurück zum Zitat Y. Wang, M. Chen, F. Zhou, and E. Ma: Nature, 2002, vol. 419, pp. 912–915.CrossRef Y. Wang, M. Chen, F. Zhou, and E. Ma: Nature, 2002, vol. 419, pp. 912–915.CrossRef
8.
Zurück zum Zitat 8. R. B. Singh, N. K. Mukhopadhyay, G. V. S. Sastry, R. Manna (2017) Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 48:1189-1203CrossRef 8. R. B. Singh, N. K. Mukhopadhyay, G. V. S. Sastry, R. Manna (2017) Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 48:1189-1203CrossRef
9.
Zurück zum Zitat Reza Alaghmand Fard, Mohsen Kazeminezhad: J. Mater Technol. 2019, vol. 8(3), pp.3114–3125. Reza Alaghmand Fard, Mohsen Kazeminezhad: J. Mater Technol. 2019, vol. 8(3), pp.3114–3125.
10.
Zurück zum Zitat B. Ma, Y. Zhao, J. Ma, H. Guo, and Q. Yang: J. Alloys Compd., 2013, vol. 549, pp. 77–81.CrossRef B. Ma, Y. Zhao, J. Ma, H. Guo, and Q. Yang: J. Alloys Compd., 2013, vol. 549, pp. 77–81.CrossRef
11.
Zurück zum Zitat X. N. Du, B. Q. Wang, and J. D. Guo: J. Mater. Res., 2007, vol. 22, pp. 1947–1953.CrossRef X. N. Du, B. Q. Wang, and J. D. Guo: J. Mater. Res., 2007, vol. 22, pp. 1947–1953.CrossRef
12.
Zurück zum Zitat R. S. Qin, A. Rahnama, W. J. Lu, X. F. Zhang and B. Elliott-Bowman, Mater. Sc. Technol, 2014, vol30, pp 1040-1044.CrossRef R. S. Qin, A. Rahnama, W. J. Lu, X. F. Zhang and B. Elliott-Bowman, Mater. Sc. Technol, 2014, vol30, pp 1040-1044.CrossRef
13.
Zurück zum Zitat J. Zhang, Z. Liu, J. Sun, H. Zhao, Q. Shi, D. Ma, Mater. Sci. Eng, 2020, vol A782, 139213, pp.1-10. J. Zhang, Z. Liu, J. Sun, H. Zhao, Q. Shi, D. Ma, Mater. Sci. Eng, 2020, vol A782, 139213, pp.1-10.
14.
Zurück zum Zitat X.N. Du, S.M. Yin, S.C. Liu, B.Q. Wang, and J.D. Guo: J. Mater. Res., 2008, vol. 23, pp. 1570–1577.CrossRef X.N. Du, S.M. Yin, S.C. Liu, B.Q. Wang, and J.D. Guo: J. Mater. Res., 2008, vol. 23, pp. 1570–1577.CrossRef
15.
Zurück zum Zitat Z. Yuanyun, W. Baoquan, G. Jingdong, Chin Shu Hsueh Pao, J. Chinese, 2009, vol. 45, No. 11, pp. 1325-1329. Z. Yuanyun, W. Baoquan, G. Jingdong, Chin Shu Hsueh Pao, J. Chinese, 2009, vol. 45, No. 11, pp. 1325-1329.
16.
Zurück zum Zitat W. Yue, R. Qin, K. Wu, Adv. Mater Res. 2011, vol. 146-147, pp. 1849-1854.CrossRef W. Yue, R. Qin, K. Wu, Adv. Mater Res. 2011, vol. 146-147, pp. 1849-1854.CrossRef
17.
Zurück zum Zitat Y. Zhou, W. Zhang, M. Sui, D. Li, G.He, Jingdong Guo, J. Mater Res, 2002, vol. 17, No. 05, pp. 921 – 924.CrossRef Y. Zhou, W. Zhang, M. Sui, D. Li, G.He, Jingdong Guo, J. Mater Res, 2002, vol. 17, No. 05, pp. 921 – 924.CrossRef
18.
19.
Zurück zum Zitat O. Troitskii: Pis’ma Zhurn Experim Teor. Fiz, 1969, vol.10(1), pp.18-22. O. Troitskii: Pis’ma Zhurn Experim Teor. Fiz, 1969, vol.10(1), pp.18-22.
20.
Zurück zum Zitat 20. K. Okazaki, M. Kagawa, H. Conrad (1978) Scr. Metall. 12:1063-1968CrossRef 20. K. Okazaki, M. Kagawa, H. Conrad (1978) Scr. Metall. 12:1063-1968CrossRef
21.
Zurück zum Zitat A. F. Sprecher, S. L. Mannan and H. Conrad: Acta Metall., 1986, vol. 34, pp. 761–800.CrossRef A. F. Sprecher, S. L. Mannan and H. Conrad: Acta Metall., 1986, vol. 34, pp. 761–800.CrossRef
22.
Zurück zum Zitat Y. Zhou, S. Xiao, and J. Guo: Mater. Lett., 2004, vol. 58, pp. 1948–1951.CrossRef Y. Zhou, S. Xiao, and J. Guo: Mater. Lett., 2004, vol. 58, pp. 1948–1951.CrossRef
23.
Zurück zum Zitat Y. Yuan, W. Liu, B. Fu, H. Xu, G. Luo, G. Tang, and Y. Jiang: J. Mater. Res., 2012, vol. 27, pp. 2630–2638.CrossRef Y. Yuan, W. Liu, B. Fu, H. Xu, G. Luo, G. Tang, and Y. Jiang: J. Mater. Res., 2012, vol. 27, pp. 2630–2638.CrossRef
24.
Zurück zum Zitat X. Xu, Y. Zhao, B. Ma, J. Zhang, and M. Zhang: Mater. Sci. Eng A, 2014, vol. 612, pp. 223–226.CrossRef X. Xu, Y. Zhao, B. Ma, J. Zhang, and M. Zhang: Mater. Sci. Eng A, 2014, vol. 612, pp. 223–226.CrossRef
25.
Zurück zum Zitat Y. Zhao, B. Ma, H. Guo, J. Ma, Q. Yang, J. Song, Materials and Design, 2013, vol. 43, pp. 195–199.CrossRef Y. Zhao, B. Ma, H. Guo, J. Ma, Q. Yang, J. Song, Materials and Design, 2013, vol. 43, pp. 195–199.CrossRef
26.
Zurück zum Zitat 26. Y. Zhao, J. Zhang, J. Tan, B. Ma (2014) J. Iron Steel Res. I. 21(7):685-689CrossRef 26. Y. Zhao, J. Zhang, J. Tan, B. Ma (2014) J. Iron Steel Res. I. 21(7):685-689CrossRef
27.
Zurück zum Zitat 27. Antonio J, Sánchez E, Hernán A. González R, CelentanoDiego J, Jorba PJ (2016) Mater. Des. 90:1159-1169CrossRef 27. Antonio J, Sánchez E, Hernán A. González R, CelentanoDiego J, Jorba PJ (2016) Mater. Des. 90:1159-1169CrossRef
28.
Zurück zum Zitat Y.R. Ma, H.J. Yang, Y.Z. Tian, J.C. Pang, Z.F. Zhang, Mater Sc Eng. A, 2018, vol.713, pp.146–150.CrossRef Y.R. Ma, H.J. Yang, Y.Z. Tian, J.C. Pang, Z.F. Zhang, Mater Sc Eng. A, 2018, vol.713, pp.146–150.CrossRef
29.
30.
Zurück zum Zitat H. P. Klug, and L. E. Alexander, X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, Wiley, New York, 1954. H. P. Klug, and L. E. Alexander, X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, Wiley, New York, 1954.
31.
Zurück zum Zitat G. K. Williamson and R. E. Smallman: Philos. Mag., 1956, vol. 1, pp. 34–46.CrossRef G. K. Williamson and R. E. Smallman: Philos. Mag., 1956, vol. 1, pp. 34–46.CrossRef
32.
Zurück zum Zitat R.E. Smallman and K.H. Westmacott: Philos. Mag., 1957, vol. 2, pp. 669–83.CrossRef R.E. Smallman and K.H. Westmacott: Philos. Mag., 1957, vol. 2, pp. 669–83.CrossRef
33.
Zurück zum Zitat K. Zhang, I.V. Alexandrov, A.R. Kilmametovz, R.Z. Valiev, and K. Luy: J. Phys. D: Appl. Phys., 1997, vol. 30, pp. 3008–15.CrossRef K. Zhang, I.V. Alexandrov, A.R. Kilmametovz, R.Z. Valiev, and K. Luy: J. Phys. D: Appl. Phys., 1997, vol. 30, pp. 3008–15.CrossRef
34.
Zurück zum Zitat 34. R. Singh, S. Kumar, N. K. Mukhopadhyay, G. V. S. Sastry, R. Manna (2013) Intl. J. Met Eng 2(1):62-68 34. R. Singh, S. Kumar, N. K. Mukhopadhyay, G. V. S. Sastry, R. Manna (2013) Intl. J. Met Eng 2(1):62-68
35.
Zurück zum Zitat D. Verma, N. K. Mukhopadhyay, G. V. S. Sastry, and R. Manna, Metall Mater Trans A,2016, vol. 7(4), pp.1803-1817.CrossRef D. Verma, N. K. Mukhopadhyay, G. V. S. Sastry, and R. Manna, Metall Mater Trans A,2016, vol. 7(4), pp.1803-1817.CrossRef
36.
Zurück zum Zitat D. Verma, N.K. Mukhopadhyay, G. V. S. Sastry, and R. Manna, Trans IIM, 2017, 70(4), pp.917-926. D. Verma, N.K. Mukhopadhyay, G. V. S. Sastry, and R. Manna, Trans IIM, 2017, 70(4), pp.917-926.
37.
Zurück zum Zitat S. H. Xiao, J. D. Guo, S. D. Wu, G. H. He, S. X. Li, Scripta Materialia, 46 (2002), pp. 1-6.CrossRef S. H. Xiao, J. D. Guo, S. D. Wu, G. H. He, S. X. Li, Scripta Materialia, 46 (2002), pp. 1-6.CrossRef
38.
Zurück zum Zitat A. F. Sprecher, S.L. Mannan, and H. Conrad: Scr. Metall., 1983, vol. 17, pp. 769–772.CrossRef A. F. Sprecher, S.L. Mannan, and H. Conrad: Scr. Metall., 1983, vol. 17, pp. 769–772.CrossRef
39.
Zurück zum Zitat 39. J. Zhao, G.X. Wang, Y. Dong, C. Ye (2017) J. Appl. Phys. 2:24 39. J. Zhao, G.X. Wang, Y. Dong, C. Ye (2017) J. Appl. Phys. 2:24
40.
Zurück zum Zitat Y. Zhou, W. Zhang, B. Wang, G. He, and J. Guo: J. Mater. Res., 2002, vol. 17, pp. 2105–2111.CrossRef Y. Zhou, W. Zhang, B. Wang, G. He, and J. Guo: J. Mater. Res., 2002, vol. 17, pp. 2105–2111.CrossRef
41.
Zurück zum Zitat Y. Zhou, J. Guo, W. Zhang, and G. He: J. Mater. Res., 2002, vol. 17, pp. 3012–3014.CrossRef Y. Zhou, J. Guo, W. Zhang, and G. He: J. Mater. Res., 2002, vol. 17, pp. 3012–3014.CrossRef
42.
Zurück zum Zitat K. Okazaki, M. Kagawa, H. Conrad, Mater. Sci. Eng., 1980, vol. 45, pp. 109–116.CrossRef K. Okazaki, M. Kagawa, H. Conrad, Mater. Sci. Eng., 1980, vol. 45, pp. 109–116.CrossRef
43.
44.
45.
Zurück zum Zitat P. S. Ho and T. Kwok: Reports Prog. Phys., 1989, vol. 52, pp. 301–348.CrossRef P. S. Ho and T. Kwok: Reports Prog. Phys., 1989, vol. 52, pp. 301–348.CrossRef
46.
Zurück zum Zitat W. J. Lu, X. F. Zhang, and R.S. Qin: Mater. Sci. Technol. (United Kingdom), 2015, vol. 31, pp. 1530–1535.CrossRef W. J. Lu, X. F. Zhang, and R.S. Qin: Mater. Sci. Technol. (United Kingdom), 2015, vol. 31, pp. 1530–1535.CrossRef
47.
Zurück zum Zitat Y. Jiang, G. Tang, L. Guan, S. Wang, Z. Xu, C. Shek, and Y. Zhu: J. Mater. Res., 2008, vol. 23, pp. 2685–2691.CrossRef Y. Jiang, G. Tang, L. Guan, S. Wang, Z. Xu, C. Shek, and Y. Zhu: J. Mater. Res., 2008, vol. 23, pp. 2685–2691.CrossRef
48.
Zurück zum Zitat O. A Troitskii, ProblemyProchnosti,1984, vol.2, pp. 176. O. A Troitskii, ProblemyProchnosti,1984, vol.2, pp. 176.
49.
Zurück zum Zitat O. A Troitskii. Rus Metal Metally, 1984, vol.2, pp. 192-195. O. A Troitskii. Rus Metal Metally, 1984, vol.2, pp. 192-195.
50.
Zurück zum Zitat 50. Kiryanchev NE, Troitskii OA, Krasnoyarskii VV, Petrova LM, Stashenko VI, Gavrish AA, Miseev VP (1985) Elektronnaya Obrabotka Materialov 2:54-58 50. Kiryanchev NE, Troitskii OA, Krasnoyarskii VV, Petrova LM, Stashenko VI, Gavrish AA, Miseev VP (1985) Elektronnaya Obrabotka Materialov 2:54-58
51.
Zurück zum Zitat O. A. Troitskii and M. M. Moiseenko, Russian Metallurgy (Metally), 1985, vol. 6, pp. 148-151. O. A. Troitskii and M. M. Moiseenko, Russian Metallurgy (Metally), 1985, vol. 6, pp. 148-151.
52.
Zurück zum Zitat 52. M. M. Moiseenko, O. A. Troitskii (1987) Rus. Metal (Metally) 1:159-161 52. M. M. Moiseenko, O. A. Troitskii (1987) Rus. Metal (Metally) 1:159-161
53.
Zurück zum Zitat 53. G. Tang, J. Zhang, M. Zheng, J. Zhang, W. Fang, Q. Li (2000) Mater. Sci. Eng. A 281:263-67CrossRef 53. G. Tang, J. Zhang, M. Zheng, J. Zhang, W. Fang, Q. Li (2000) Mater. Sci. Eng. A 281:263-67CrossRef
54.
Zurück zum Zitat G. Tang, M. Zheng, Y. Zhu, J. Zhang, W. Fang, and Q. Li, J. Mater proc technol, 1998, vol. 84, pp. 268-270.CrossRef G. Tang, M. Zheng, Y. Zhu, J. Zhang, W. Fang, and Q. Li, J. Mater proc technol, 1998, vol. 84, pp. 268-270.CrossRef
55.
Zurück zum Zitat X. Suhong, Z. Yizhou, G. Jingdong, W. Shiding, Y. Ge, L. Shouxin, H. Guanhu, Z. Benlian, Mater Sci Eng A, 2002, vol. A332, pp. 351–355.CrossRef X. Suhong, Z. Yizhou, G. Jingdong, W. Shiding, Y. Ge, L. Shouxin, H. Guanhu, Z. Benlian, Mater Sci Eng A, 2002, vol. A332, pp. 351–355.CrossRef
56.
Zurück zum Zitat X. Li, Y. Guan, Nanotechnology and Precision Engineering, 2020, vol. 3, pp. 105–125.CrossRef X. Li, Y. Guan, Nanotechnology and Precision Engineering, 2020, vol. 3, pp. 105–125.CrossRef
57.
Zurück zum Zitat X. Pan, X. Wang, Z. Tian, W. He, X. Shi, P. Chen, and L. Zhou: J. Alloys Compd., 2021, vol. 850, pp. 156672.CrossRef X. Pan, X. Wang, Z. Tian, W. He, X. Shi, P. Chen, and L. Zhou: J. Alloys Compd., 2021, vol. 850, pp. 156672.CrossRef
58.
Zurück zum Zitat Y. Yang, K. Zhou, and G. Li: Opt. Laser Technol., 2019, vol. 109, pp. 1–7.CrossRef Y. Yang, K. Zhou, and G. Li: Opt. Laser Technol., 2019, vol. 109, pp. 1–7.CrossRef
59.
Zurück zum Zitat S. Petronic, T. Sibalija, M. Burzic, S. Polic, K. Colic and D. Milovanovic, Metals, 2016, vol. 6, 41, pp. 1-14. S. Petronic, T. Sibalija, M. Burzic, S. Polic, K. Colic and D. Milovanovic, Metals, 2016, vol. 6, 41, pp. 1-14.
60.
Zurück zum Zitat 60. D. Bauerle (2003) Laser Processing and Chemistry. Springer, Berlin, pp 13-256 60. D. Bauerle (2003) Laser Processing and Chemistry. Springer, Berlin, pp 13-256
60.
Zurück zum Zitat 61. J.P. Chu, J.M. Rigsbee, G. Banas, H.E. Elsayed-Ali (1999) Mater. Sci. Eng. 260A:260–68CrossRef 61. J.P. Chu, J.M. Rigsbee, G. Banas, H.E. Elsayed-Ali (1999) Mater. Sci. Eng. 260A:260–68CrossRef
62.
Zurück zum Zitat P. Peyre, L. Berthe, X. Scherpereel, R. Fabbro, E. Bartniki, J. Appl. Phys. 1998, vol. 84, pp. 5985–5992.CrossRef P. Peyre, L. Berthe, X. Scherpereel, R. Fabbro, E. Bartniki, J. Appl. Phys. 1998, vol. 84, pp. 5985–5992.CrossRef
63.
Zurück zum Zitat N. L. LaHaye, S. S. Harilal, P. K. Diwakar, A. Hassanein. J Anal At Spectrom 2013, vol. 28, pp.1781-1787.CrossRef N. L. LaHaye, S. S. Harilal, P. K. Diwakar, A. Hassanein. J Anal At Spectrom 2013, vol. 28, pp.1781-1787.CrossRef
Metadaten
Titel
Recovery of Ductility in Ultrafine-Grained Low Carbon Steel Processed by Electropulsing
verfasst von
D. Bhuyan
R. K. Pandey
S. N. Ojha
G. V. S. Sastry
H. Choudhary
A. Sharma
R. Manna
Publikationsdatum
07.05.2021
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions A / Ausgabe 7/2021
Print ISSN: 1073-5623
Elektronische ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-021-06293-7

Weitere Artikel der Ausgabe 7/2021

Metallurgical and Materials Transactions A 7/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.