Skip to main content

2021 | OriginalPaper | Buchkapitel

Recovery of Nanomaterials for Battery Applications

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the last decades, many researchers were inspired to develop recycling technologies for nanomaterial manufacturing and manage the excessive generation of wastes (biomass, biological, plastic, and industrial wastes). Cost-efficient, sustainable process, and good material properties are the requirements to meet for a successful recycling route and, consequently, inducing huge economic and environmental benefits. Moreover, the use of the recycled nanomaterials for several applications was reported in the literature, such as catalysis, energy storage, and biomedical applications. This chapter will be devoted to reviewing the studies carried on the recycling of nanomaterials for battery applications, mainly alkali metal ion batteries (alkali metal: Li, Na, Mg, K), conventional secondary batteries, and alkaline batteries.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bruce PG, Scrosati B, Tarascon J-M (2008) Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed 47(16):2930–2946CrossRef Bruce PG, Scrosati B, Tarascon J-M (2008) Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed 47(16):2930–2946CrossRef
2.
Zurück zum Zitat Jiang C, Hosono E, Zhou H (2006) Nanomaterials for lithium ion batteries. Nano Today 1(4):28–33CrossRef Jiang C, Hosono E, Zhou H (2006) Nanomaterials for lithium ion batteries. Nano Today 1(4):28–33CrossRef
3.
Zurück zum Zitat Lee KT, Cho J (2011) Roles of nanosize in lithium reactive nanomaterials for lithium ion batteries. Nano Today 6(1):28–41CrossRef Lee KT, Cho J (2011) Roles of nanosize in lithium reactive nanomaterials for lithium ion batteries. Nano Today 6(1):28–41CrossRef
4.
Zurück zum Zitat Yaroslavtsev AB, Kulova TL, Skundin AM (2015) Electrode nanomaterials for lithium-ion batteries. Russ Chem Rev 84(8):826–852CrossRef Yaroslavtsev AB, Kulova TL, Skundin AM (2015) Electrode nanomaterials for lithium-ion batteries. Russ Chem Rev 84(8):826–852CrossRef
5.
Zurück zum Zitat Sun Y, Liu N, Cui Y (2016) Promises and challenges of nanomaterials for lithium-based rechargeable batteries. Nat Energy 1(7) Sun Y, Liu N, Cui Y (2016) Promises and challenges of nanomaterials for lithium-based rechargeable batteries. Nat Energy 1(7)
6.
Zurück zum Zitat Xu Z-L, Kim J-K, Kang K (2018) Carbon nanomaterials for advanced lithium sulfur batteries. Nano Today 19:84–107CrossRef Xu Z-L, Kim J-K, Kang K (2018) Carbon nanomaterials for advanced lithium sulfur batteries. Nano Today 19:84–107CrossRef
7.
Zurück zum Zitat Devaraju MK, Honma I (2012) Hydrothermal and solvothermal process towards development of LiMPO4 (M=Fe, Mn) nanomaterials for lithium-ion batteries. Adv Energy Mater 2(3):284–297CrossRef Devaraju MK, Honma I (2012) Hydrothermal and solvothermal process towards development of LiMPO4 (M=Fe, Mn) nanomaterials for lithium-ion batteries. Adv Energy Mater 2(3):284–297CrossRef
8.
Zurück zum Zitat Mei J, Liao T, Kou L, Sun Z (2017) 2D metal oxides: two-dimensional metal oxide nanomaterials for next-generation rechargeable batteries. Adv Mater 29(48):1770344 Mei J, Liao T, Kou L, Sun Z (2017) 2D metal oxides: two-dimensional metal oxide nanomaterials for next-generation rechargeable batteries. Adv Mater 29(48):1770344
9.
Zurück zum Zitat Xia Q, Li W, Miao Z, Chou S, Liu H (2017) Phosphorus and phosphide nanomaterials for sodium-ion batteries. Nano Res 10(12):4055–4081CrossRef Xia Q, Li W, Miao Z, Chou S, Liu H (2017) Phosphorus and phosphide nanomaterials for sodium-ion batteries. Nano Res 10(12):4055–4081CrossRef
10.
Zurück zum Zitat Yuan YF, Tu JP, Wu HM, Li Y, Shi DQ, Zhao XB (2006) Effect of ZnO nanomaterials associated with Ca(OH)2 as anode material for Ni–Zn batteries. J Power Sources 159(1):357–360CrossRef Yuan YF, Tu JP, Wu HM, Li Y, Shi DQ, Zhao XB (2006) Effect of ZnO nanomaterials associated with Ca(OH)2 as anode material for Ni–Zn batteries. J Power Sources 159(1):357–360CrossRef
11.
Zurück zum Zitat Lu Y, Lu Y, Niu Z, Chen J (2018) Graphene-based nanomaterials for sodium-ion batteries. Adv Energy Mater 8(17):1702469CrossRef Lu Y, Lu Y, Niu Z, Chen J (2018) Graphene-based nanomaterials for sodium-ion batteries. Adv Energy Mater 8(17):1702469CrossRef
12.
Zurück zum Zitat Jin T, Han Q, Wang Y, Jiao L (2017) 1D nanomaterials: design, synthesis, and applications in sodium-ion batteries. Small 14(2):1703086CrossRef Jin T, Han Q, Wang Y, Jiao L (2017) 1D nanomaterials: design, synthesis, and applications in sodium-ion batteries. Small 14(2):1703086CrossRef
13.
Zurück zum Zitat Zhang J, Gu P, Xu J, Xue H, Pang H (2016) High performance of electrochemical lithium storage batteries: ZnO-based nanomaterials for lithium-ion and lithium–sulfur batteries. Nanoscale 8(44):18578–18595CrossRef Zhang J, Gu P, Xu J, Xue H, Pang H (2016) High performance of electrochemical lithium storage batteries: ZnO-based nanomaterials for lithium-ion and lithium–sulfur batteries. Nanoscale 8(44):18578–18595CrossRef
14.
Zurück zum Zitat Ali GAM, Fouad OA, Makhlouf SA, Yusoff MM, Chong KF (2016) Optical and electrochemical properties of Co3O4/SiO2 nanocomposite. Adv Mater Res 1133:447–451CrossRef Ali GAM, Fouad OA, Makhlouf SA, Yusoff MM, Chong KF (2016) Optical and electrochemical properties of Co3O4/SiO2 nanocomposite. Adv Mater Res 1133:447–451CrossRef
15.
Zurück zum Zitat Ali GAM, Wahba OAG, Hassan AM, Fouad OA, Chong KF (2015) Calcium-based nanosized mixed metal oxides for supercapacitor application. Ceram Int 41(6):8230–8234CrossRef Ali GAM, Wahba OAG, Hassan AM, Fouad OA, Chong KF (2015) Calcium-based nanosized mixed metal oxides for supercapacitor application. Ceram Int 41(6):8230–8234CrossRef
16.
Zurück zum Zitat Ali GAM, Fouad OA, Makhlouf SA, Yusoff MM, Chong KF (2014) Co3O4/SiO2 nanocomposites for supercapacitor application. J Solid State Electrochem 18(9):2505–2512CrossRef Ali GAM, Fouad OA, Makhlouf SA, Yusoff MM, Chong KF (2014) Co3O4/SiO2 nanocomposites for supercapacitor application. J Solid State Electrochem 18(9):2505–2512CrossRef
17.
Zurück zum Zitat Ali GAM, Habeeb OA, Algarni H, Chong KF (2018) CaO impregnated highly porous honeycomb activated carbon from agriculture waste: symmetrical supercapacitor study. J Mater Sci 54:683–692CrossRef Ali GAM, Habeeb OA, Algarni H, Chong KF (2018) CaO impregnated highly porous honeycomb activated carbon from agriculture waste: symmetrical supercapacitor study. J Mater Sci 54:683–692CrossRef
18.
Zurück zum Zitat Ali GAM, Fouad OA, Makhlouf SA (2013) Structural, optical and electrical properties of sol-gel prepared mesoporous Co3O4/SiO2 nanocomposites. J Alloy Compd 579:606–611CrossRef Ali GAM, Fouad OA, Makhlouf SA (2013) Structural, optical and electrical properties of sol-gel prepared mesoporous Co3O4/SiO2 nanocomposites. J Alloy Compd 579:606–611CrossRef
19.
Zurück zum Zitat Samaddar P, Ok YS, Kim K-H, Kwon EE, Tsang DCW (2018) Synthesis of nanomaterials from various wastes and their new age applications. J Clean Prod 197:1190–1209CrossRef Samaddar P, Ok YS, Kim K-H, Kwon EE, Tsang DCW (2018) Synthesis of nanomaterials from various wastes and their new age applications. J Clean Prod 197:1190–1209CrossRef
20.
Zurück zum Zitat Xu J, Thomas HR, Francis RW, Lum KR, Wang J, Liang B (2008) A review of processes and technologies for the recycling of lithium-ion secondary batteries. J Power Sources 177(2):512–527CrossRef Xu J, Thomas HR, Francis RW, Lum KR, Wang J, Liang B (2008) A review of processes and technologies for the recycling of lithium-ion secondary batteries. J Power Sources 177(2):512–527CrossRef
21.
Zurück zum Zitat Chagnes A, Pospiech B (2013) A brief review on hydrometallurgical technologies for recycling spent lithium-ion batteries. J Chem Technol Biotechnol 88(7):1191–1199CrossRef Chagnes A, Pospiech B (2013) A brief review on hydrometallurgical technologies for recycling spent lithium-ion batteries. J Chem Technol Biotechnol 88(7):1191–1199CrossRef
22.
Zurück zum Zitat Bradbury K (2010) Energy storage technology review. Duke University, pp 1–34 Bradbury K (2010) Energy storage technology review. Duke University, pp 1–34
23.
Zurück zum Zitat Rajagopalan R, Tang Y, Ji X, Jia C, Wang H (2020) Advancements and challenges in potassium ion batteries: a comprehensive review. Adv Func Mater 30(12):1909486CrossRef Rajagopalan R, Tang Y, Ji X, Jia C, Wang H (2020) Advancements and challenges in potassium ion batteries: a comprehensive review. Adv Func Mater 30(12):1909486CrossRef
24.
Zurück zum Zitat Xu X, Xiong F, Meng J, Wang X, Niu C, An Q, Mai L (2020) Vanadium-based nanomaterials: a promising family for emerging metal-ion batteries. Adv Func Mater 30(10):1904398CrossRef Xu X, Xiong F, Meng J, Wang X, Niu C, An Q, Mai L (2020) Vanadium-based nanomaterials: a promising family for emerging metal-ion batteries. Adv Func Mater 30(10):1904398CrossRef
25.
Zurück zum Zitat Rashad M, Asif M, Wang Y, He Z, Ahmed I (2020) Recent advances in electrolytes and cathode materials for magnesium and hybrid-ion batteries. Energy Storage Mater 25:342–375CrossRef Rashad M, Asif M, Wang Y, He Z, Ahmed I (2020) Recent advances in electrolytes and cathode materials for magnesium and hybrid-ion batteries. Energy Storage Mater 25:342–375CrossRef
26.
Zurück zum Zitat Massé RC, Uchaker E, Cao G (2015) Beyond Li-ion: electrode materials for sodium- and magnesium-ion batteries. Sci China Mater 58(9):715–766CrossRef Massé RC, Uchaker E, Cao G (2015) Beyond Li-ion: electrode materials for sodium- and magnesium-ion batteries. Sci China Mater 58(9):715–766CrossRef
27.
Zurück zum Zitat Huie MM, Bock DC, Takeuchi ES, Marschilok AC, Takeuchi KJ (2015) Cathode materials for magnesium and magnesium-ion based batteries. Coord Chem Rev 287:15–27CrossRef Huie MM, Bock DC, Takeuchi ES, Marschilok AC, Takeuchi KJ (2015) Cathode materials for magnesium and magnesium-ion based batteries. Coord Chem Rev 287:15–27CrossRef
28.
Zurück zum Zitat Kim H, Kim H, Ding Z, Lee MH, Lim K, Yoon G, Kang K (2016) Recent progress in electrode materials for sodium-ion batteries. Adv Energy Mater 6(19):1600943CrossRef Kim H, Kim H, Ding Z, Lee MH, Lim K, Yoon G, Kang K (2016) Recent progress in electrode materials for sodium-ion batteries. Adv Energy Mater 6(19):1600943CrossRef
29.
Zurück zum Zitat Wang LP, Yu L, Wang X, Srinivasan M, Xu ZJ (2015) Recent developments in electrode materials for sodium-ion batteries. J Mater Chem A 3(18):9353–9378CrossRef Wang LP, Yu L, Wang X, Srinivasan M, Xu ZJ (2015) Recent developments in electrode materials for sodium-ion batteries. J Mater Chem A 3(18):9353–9378CrossRef
30.
Zurück zum Zitat Dahbi M, Yabuuchi N, Kubota K, Tokiwa K, Komaba S (2014) Negative electrodes for Na-ion batteries. Phys Chem Chem Phys 16(29):15007CrossRef Dahbi M, Yabuuchi N, Kubota K, Tokiwa K, Komaba S (2014) Negative electrodes for Na-ion batteries. Phys Chem Chem Phys 16(29):15007CrossRef
31.
Zurück zum Zitat Shea JJ, Luo C (2020) Organic electrode materials for metal ion batteries. ACS Appl Mater Interfaces 12(5):5361–5380CrossRef Shea JJ, Luo C (2020) Organic electrode materials for metal ion batteries. ACS Appl Mater Interfaces 12(5):5361–5380CrossRef
32.
Zurück zum Zitat Ohzuku T, Brodd RJ (2007) An overview of positive-electrode materials for advanced lithium-ion batteries. J Power Sources 174(2):449–456CrossRef Ohzuku T, Brodd RJ (2007) An overview of positive-electrode materials for advanced lithium-ion batteries. J Power Sources 174(2):449–456CrossRef
33.
Zurück zum Zitat Kubota K, Yabuuchi N, Yoshida H, Dahbi M, Komaba S (2014) Layered oxides as positive electrode materials for Na-ion batteries. MRS Bull 39(5):416–422CrossRef Kubota K, Yabuuchi N, Yoshida H, Dahbi M, Komaba S (2014) Layered oxides as positive electrode materials for Na-ion batteries. MRS Bull 39(5):416–422CrossRef
34.
Zurück zum Zitat Sakai T, Uehara I, Ishikawa H (1999) R&D on metal hydride materials and Ni–MH batteries in Japan. J Alloy Compd 293–295:762–769CrossRef Sakai T, Uehara I, Ishikawa H (1999) R&D on metal hydride materials and Ni–MH batteries in Japan. J Alloy Compd 293–295:762–769CrossRef
35.
Zurück zum Zitat Zhu WH, Zhu Y, Davis Z, Tatarchuk BJ (2013) Energy efficiency and capacity retention of Ni–MH batteries for storage applications. Appl Energy 106:307–313CrossRef Zhu WH, Zhu Y, Davis Z, Tatarchuk BJ (2013) Energy efficiency and capacity retention of Ni–MH batteries for storage applications. Appl Energy 106:307–313CrossRef
36.
Zurück zum Zitat Geng M (2003) Development of advanced rechargeable Ni/MH and Ni/Zn batteries. Int J Hydrogen Energy 28(6):633–636CrossRef Geng M (2003) Development of advanced rechargeable Ni/MH and Ni/Zn batteries. Int J Hydrogen Energy 28(6):633–636CrossRef
37.
Zurück zum Zitat Ruetschi P (1977) Review on the lead—acid battery science and technology. J Power Sources 2(1):3–120CrossRef Ruetschi P (1977) Review on the lead—acid battery science and technology. J Power Sources 2(1):3–120CrossRef
38.
Zurück zum Zitat Yang J, Hu C, Wang H, Yang K, Liu JB, Yan H (2016) Review on the research of failure modes and mechanism for lead-acid batteries. Int J Energy Res 41(3):336–352CrossRef Yang J, Hu C, Wang H, Yang K, Liu JB, Yan H (2016) Review on the research of failure modes and mechanism for lead-acid batteries. Int J Energy Res 41(3):336–352CrossRef
39.
Zurück zum Zitat Feng F (2001) Electrochemical behaviour of intermetallic-based metal hydrides used in Ni/metal hydride (MH) batteries: a review. Int J Hydrogen Energy 26(7):725–734CrossRef Feng F (2001) Electrochemical behaviour of intermetallic-based metal hydrides used in Ni/metal hydride (MH) batteries: a review. Int J Hydrogen Energy 26(7):725–734CrossRef
40.
Zurück zum Zitat Zhang J, Zhang G, Chen Z, Dai H, Hu Q, Liao S, Sun S (2020) Emerging applications of atomic layer deposition for lithium-sulfur and sodium-sulfur batteries. Energy Storage Mater 26:513–533CrossRef Zhang J, Zhang G, Chen Z, Dai H, Hu Q, Liao S, Sun S (2020) Emerging applications of atomic layer deposition for lithium-sulfur and sodium-sulfur batteries. Energy Storage Mater 26:513–533CrossRef
41.
Zurück zum Zitat Wen Z, Cao J, Gu Z, Xu X, Zhang F, Lin Z (2008) Research on sodium sulfur battery for energy storage. Solid State Ionics 179(27–32):1697–1701CrossRef Wen Z, Cao J, Gu Z, Xu X, Zhang F, Lin Z (2008) Research on sodium sulfur battery for energy storage. Solid State Ionics 179(27–32):1697–1701CrossRef
42.
Zurück zum Zitat Benato R, Cosciani N, Crugnola G, Dambone Sessa S, Lodi G, Parmeggiani C, Todeschini M (2015) Sodium nickel chloride battery technology for large-scale stationary storage in the high voltage network. J Power Sources 293:127–136CrossRef Benato R, Cosciani N, Crugnola G, Dambone Sessa S, Lodi G, Parmeggiani C, Todeschini M (2015) Sodium nickel chloride battery technology for large-scale stationary storage in the high voltage network. J Power Sources 293:127–136CrossRef
43.
Zurück zum Zitat Sudworth J (2001) The sodium/nickel chloride (ZEBRA) battery. J Power Sources 100(1–2):149–163CrossRef Sudworth J (2001) The sodium/nickel chloride (ZEBRA) battery. J Power Sources 100(1–2):149–163CrossRef
44.
Zurück zum Zitat Vanzyl A (1996) Review of the zebra battery system development. Solid State Ionics 86–88:883–889CrossRef Vanzyl A (1996) Review of the zebra battery system development. Solid State Ionics 86–88:883–889CrossRef
45.
Zurück zum Zitat Ottaviani M, Turconi A, Basso D (2020) The sodium/nickel chloride battery. In: Encyclopedia of Electrochemistry. Wiley, pp 1–22 Ottaviani M, Turconi A, Basso D (2020) The sodium/nickel chloride battery. In: Encyclopedia of Electrochemistry. Wiley, pp 1–22
46.
Zurück zum Zitat Weber AZ, Mench MM, Meyers JP, Ross PN, Gostick JT, Liu Q (2011) Redox flow batteries: a review. J Appl Electrochem 41(10):1137–1164CrossRef Weber AZ, Mench MM, Meyers JP, Ross PN, Gostick JT, Liu Q (2011) Redox flow batteries: a review. J Appl Electrochem 41(10):1137–1164CrossRef
47.
Zurück zum Zitat Alotto P, Guarnieri M, Moro F (2014) Redox flow batteries for the storage of renewable energy: a review. Renew Sustain Energy Rev 29:325–335CrossRef Alotto P, Guarnieri M, Moro F (2014) Redox flow batteries for the storage of renewable energy: a review. Renew Sustain Energy Rev 29:325–335CrossRef
48.
Zurück zum Zitat Cunha Á, Martins J, Rodrigues N, Brito FP (2014) Vanadium redox flow batteries: a technology review. Int J Energy Res 39(7):889–918CrossRef Cunha Á, Martins J, Rodrigues N, Brito FP (2014) Vanadium redox flow batteries: a technology review. Int J Energy Res 39(7):889–918CrossRef
49.
Zurück zum Zitat Zhang X, Ji L, Toprakci O, Liang Y, Alcoutlabi M (2011) Electrospun nanofiber-based anodes, cathodes, and separators for advanced lithium-ion batteries. Polym Rev 51(3):239–264CrossRef Zhang X, Ji L, Toprakci O, Liang Y, Alcoutlabi M (2011) Electrospun nanofiber-based anodes, cathodes, and separators for advanced lithium-ion batteries. Polym Rev 51(3):239–264CrossRef
50.
Zurück zum Zitat Scrosati B, Garche J (2010) Lithium batteries: Status, prospects and future. J Power Sources 195(9):2419–2430CrossRef Scrosati B, Garche J (2010) Lithium batteries: Status, prospects and future. J Power Sources 195(9):2419–2430CrossRef
51.
Zurück zum Zitat Zabaniotou A, Kouskoumvekaki E, Sanopoulos D (1999) Recycling of spent lead/acid batteries: the case of Greece. Resour Conserv Recycl 25(3–4):301–317CrossRef Zabaniotou A, Kouskoumvekaki E, Sanopoulos D (1999) Recycling of spent lead/acid batteries: the case of Greece. Resour Conserv Recycl 25(3–4):301–317CrossRef
52.
Zurück zum Zitat Huang P-H, Kuo J-K, Huang C-Y (2015) A new application of the ultra battery to hybrid fuel cell vehicles. Int J Energy Res 40(2):146–159CrossRef Huang P-H, Kuo J-K, Huang C-Y (2015) A new application of the ultra battery to hybrid fuel cell vehicles. Int J Energy Res 40(2):146–159CrossRef
53.
Zurück zum Zitat Molina MG (2017) Energy storage and power electronics technologies: a strong combination to empower the transformation to the smart grid. Proc IEEE 105(11):2191–2219CrossRef Molina MG (2017) Energy storage and power electronics technologies: a strong combination to empower the transformation to the smart grid. Proc IEEE 105(11):2191–2219CrossRef
54.
Zurück zum Zitat Akinyele D, Belikov J, Levron Y (2017) Battery storage technologies for electrical applications: impact in stand-alone photovoltaic systems. Energies 10(11):1760CrossRef Akinyele D, Belikov J, Levron Y (2017) Battery storage technologies for electrical applications: impact in stand-alone photovoltaic systems. Energies 10(11):1760CrossRef
55.
Zurück zum Zitat Zhang W-J (2011) A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J Power Sources 196(1):13–24CrossRef Zhang W-J (2011) A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J Power Sources 196(1):13–24CrossRef
56.
Zurück zum Zitat Rothermel S, Evertz M, Kasnatscheew J, Qi X, Grützke M, Winter M, Nowak S (2016) Graphite recycling from spent lithium-ion batteries. Chemsuschem 9(24):3473–3484CrossRef Rothermel S, Evertz M, Kasnatscheew J, Qi X, Grützke M, Winter M, Nowak S (2016) Graphite recycling from spent lithium-ion batteries. Chemsuschem 9(24):3473–3484CrossRef
57.
Zurück zum Zitat Moradi B, Botte GG (2015) Recycling of graphite anodes for the next generation of lithium ion batteries. J Appl Electrochem 46(2):123–148CrossRef Moradi B, Botte GG (2015) Recycling of graphite anodes for the next generation of lithium ion batteries. J Appl Electrochem 46(2):123–148CrossRef
58.
Zurück zum Zitat Sabisch JEC, Anapolsky A, Liu G, Minor AM (2018) Evaluation of using pre-lithiated graphite from recycled Li-ion batteries for new LiB anodes. Resour Conserv Recycl 129:129–134CrossRef Sabisch JEC, Anapolsky A, Liu G, Minor AM (2018) Evaluation of using pre-lithiated graphite from recycled Li-ion batteries for new LiB anodes. Resour Conserv Recycl 129:129–134CrossRef
59.
Zurück zum Zitat Yang Y, Song S, Lei S, Sun W, Hou H, Jiang F, Ji X, Zhao W, Hu Y (2019) A process for combination of recycling lithium and regenerating graphite from spent lithium-ion battery. Waste Manag 85:529–537CrossRef Yang Y, Song S, Lei S, Sun W, Hou H, Jiang F, Ji X, Zhao W, Hu Y (2019) A process for combination of recycling lithium and regenerating graphite from spent lithium-ion battery. Waste Manag 85:529–537CrossRef
60.
Zurück zum Zitat Zhao L, Liu X, Wan C, Ye X, Wu F (2018) Soluble graphene nanosheets from recycled graphite of spent lithium ion batteries. J Mater Eng Perform 27(2):875–880CrossRef Zhao L, Liu X, Wan C, Ye X, Wu F (2018) Soluble graphene nanosheets from recycled graphite of spent lithium ion batteries. J Mater Eng Perform 27(2):875–880CrossRef
61.
Zurück zum Zitat Yu J, He Y, Ge Z, Li H, Xie W, Wang S (2018) A promising physical method for recovery of LiCoO2 and graphite from spent lithium-ion batteries: grinding flotation. Sep Purif Technol 190:45–52CrossRef Yu J, He Y, Ge Z, Li H, Xie W, Wang S (2018) A promising physical method for recovery of LiCoO2 and graphite from spent lithium-ion batteries: grinding flotation. Sep Purif Technol 190:45–52CrossRef
62.
Zurück zum Zitat He Y, Zhang T, Wang F, Zhang G, Zhang W, Wang J (2017) Recovery of LiCoO2 and graphite from spent lithium-ion batteries by Fenton reagent-assisted flotation. J Clean Prod 143:319–325CrossRef He Y, Zhang T, Wang F, Zhang G, Zhang W, Wang J (2017) Recovery of LiCoO2 and graphite from spent lithium-ion batteries by Fenton reagent-assisted flotation. J Clean Prod 143:319–325CrossRef
63.
Zurück zum Zitat Chen Y, Liu C, Sun X, Ye H, Cheung C, Zhou L (2015) Recycled diesel carbon nanoparticles for nanostructured battery anodes. J Power Sources 275:26–31CrossRef Chen Y, Liu C, Sun X, Ye H, Cheung C, Zhou L (2015) Recycled diesel carbon nanoparticles for nanostructured battery anodes. J Power Sources 275:26–31CrossRef
64.
Zurück zum Zitat Zhang G, He Y, Feng Y, Wang H, Zhu X (2018) Pyrolysis-ultrasonic-assisted flotation technology for recovering graphite and LiCoO2 from spent lithium-ion batteries. ACS Sustain Chem Eng 6(8):10896–10904CrossRef Zhang G, He Y, Feng Y, Wang H, Zhu X (2018) Pyrolysis-ultrasonic-assisted flotation technology for recovering graphite and LiCoO2 from spent lithium-ion batteries. ACS Sustain Chem Eng 6(8):10896–10904CrossRef
65.
Zurück zum Zitat Zhang W, Liu Z, Xia J, Li F, He W, Li G, Huang J (2017) Preparing graphene from anode graphite of spent lithium-ion batteries. Front Environ Sci Eng 11(5) Zhang W, Liu Z, Xia J, Li F, He W, Li G, Huang J (2017) Preparing graphene from anode graphite of spent lithium-ion batteries. Front Environ Sci Eng 11(5)
66.
Zurück zum Zitat Xiao J, Li J, Xu Z (2017) Recycling metals from lithium ion battery by mechanical separation and vacuum metallurgy. J Hazard Mater 338:124–131CrossRef Xiao J, Li J, Xu Z (2017) Recycling metals from lithium ion battery by mechanical separation and vacuum metallurgy. J Hazard Mater 338:124–131CrossRef
67.
Zurück zum Zitat Guo Y, Li F, Zhu H, Li G, Huang J, He W (2016) Leaching lithium from the anode electrode materials of spent lithium-ion batteries by hydrochloric acid (HCl). Waste Manag 51:227–233CrossRef Guo Y, Li F, Zhu H, Li G, Huang J, He W (2016) Leaching lithium from the anode electrode materials of spent lithium-ion batteries by hydrochloric acid (HCl). Waste Manag 51:227–233CrossRef
68.
Zurück zum Zitat Huang B, Pan Z, Su X, An L (2018) Recycling of lithium-ion batteries: recent advances and perspectives. J Power Sources 399:274–286CrossRef Huang B, Pan Z, Su X, An L (2018) Recycling of lithium-ion batteries: recent advances and perspectives. J Power Sources 399:274–286CrossRef
69.
Zurück zum Zitat Schauerman CM, Ganter MJ, Gaustad G, Babbitt CW, Raffaelle RP, Landi BJ (2012) Recycling single-wall carbon nanotube anodes from lithium ion batteries. J Mater Chem 22(24):12008CrossRef Schauerman CM, Ganter MJ, Gaustad G, Babbitt CW, Raffaelle RP, Landi BJ (2012) Recycling single-wall carbon nanotube anodes from lithium ion batteries. J Mater Chem 22(24):12008CrossRef
70.
Zurück zum Zitat Chou C-Y, Lee M, Hwang GS (2015) A comparative first-principles study on sodiation of Silicon, Germanium, and Tin for Sodium-Ion batteries. J Phys Chem C 119(27):14843–14850CrossRef Chou C-Y, Lee M, Hwang GS (2015) A comparative first-principles study on sodiation of Silicon, Germanium, and Tin for Sodium-Ion batteries. J Phys Chem C 119(27):14843–14850CrossRef
71.
Zurück zum Zitat Dimov N, Kugino S, Yoshio M (2003) Carbon-coated silicon as anode material for lithium ion batteries: advantages and limitations. Electrochim Acta 48(11):1579–1587CrossRef Dimov N, Kugino S, Yoshio M (2003) Carbon-coated silicon as anode material for lithium ion batteries: advantages and limitations. Electrochim Acta 48(11):1579–1587CrossRef
72.
Zurück zum Zitat Yoshio M, Tsumura T, Dimov N (2005) Electrochemical behaviors of silicon based anode material. J Power Sources 146(1–2):10–14CrossRef Yoshio M, Tsumura T, Dimov N (2005) Electrochemical behaviors of silicon based anode material. J Power Sources 146(1–2):10–14CrossRef
73.
Zurück zum Zitat Park M-H, Kim MG, Joo J, Kim K, Kim J, Ahn S, Cui Y, Cho J (2009) Silicon nanotube battery anodes. Nano Lett 9(11):3844–3847CrossRef Park M-H, Kim MG, Joo J, Kim K, Kim J, Ahn S, Cui Y, Cho J (2009) Silicon nanotube battery anodes. Nano Lett 9(11):3844–3847CrossRef
74.
Zurück zum Zitat Fang S, Tong Z, Nie P, Liu G, Zhang X (2017) Raspberry-like nanostructured silicon composite anode for high-performance lithium-ion batteries. ACS Appl Mater Interfaces 9(22):18766–18773CrossRef Fang S, Tong Z, Nie P, Liu G, Zhang X (2017) Raspberry-like nanostructured silicon composite anode for high-performance lithium-ion batteries. ACS Appl Mater Interfaces 9(22):18766–18773CrossRef
75.
Zurück zum Zitat Wang H, Tang W, Ni L, Ma W, Chen G, Zhang N, Liu X, Ma R (2020) Synthesis of silicon nanosheets from kaolinite as a high-performance anode material for lithium-ion batteries. J Phys Chem Solids 137:109227CrossRef Wang H, Tang W, Ni L, Ma W, Chen G, Zhang N, Liu X, Ma R (2020) Synthesis of silicon nanosheets from kaolinite as a high-performance anode material for lithium-ion batteries. J Phys Chem Solids 137:109227CrossRef
76.
Zurück zum Zitat Pan Q, Zhao J, Du Y, Liu R, Li N, Xing B, Jiang S, Pang M, Qu W, Liang W, Li Z, Cao F (2020) Coal-based kaolin derived porous silicon nanoparticles as anode materials for Li-ion batteries. Microporous Mesoporous Mater 294:109918CrossRef Pan Q, Zhao J, Du Y, Liu R, Li N, Xing B, Jiang S, Pang M, Qu W, Liang W, Li Z, Cao F (2020) Coal-based kaolin derived porous silicon nanoparticles as anode materials for Li-ion batteries. Microporous Mesoporous Mater 294:109918CrossRef
77.
Zurück zum Zitat Loaiza LC, Monconduit L, Seznec V (2020) Si and Ge-based anode materials for Li-, Na-, and K-ion batteries: a perspective from structure to electrochemical mechanism. Small 16(5):1905260CrossRef Loaiza LC, Monconduit L, Seznec V (2020) Si and Ge-based anode materials for Li-, Na-, and K-ion batteries: a perspective from structure to electrochemical mechanism. Small 16(5):1905260CrossRef
78.
Zurück zum Zitat Wen Z, Lu G, Mao S, Kim H, Cui S, Yu K, Huang X, Hurley PT, Mao O, Chen J (2013) Silicon nanotube anode for lithium-ion batteries. Electrochem Commun 29:67–70CrossRef Wen Z, Lu G, Mao S, Kim H, Cui S, Yu K, Huang X, Hurley PT, Mao O, Chen J (2013) Silicon nanotube anode for lithium-ion batteries. Electrochem Commun 29:67–70CrossRef
79.
Zurück zum Zitat Su X, Wu Q, Li J, Xiao X, Lott A, Lu W, Sheldon BW, Wu J (2013) Silicon-based nanomaterials for lithium-ion batteries: a review. Adv Energ Mater 4(1):1300882CrossRef Su X, Wu Q, Li J, Xiao X, Lott A, Lu W, Sheldon BW, Wu J (2013) Silicon-based nanomaterials for lithium-ion batteries: a review. Adv Energ Mater 4(1):1300882CrossRef
80.
Zurück zum Zitat Yin Y, Wan L, Guo Y (2012) Silicon-based nanomaterials for lithium-ion batteries. Chin Sci Bull 57(32):4104–4110CrossRef Yin Y, Wan L, Guo Y (2012) Silicon-based nanomaterials for lithium-ion batteries. Chin Sci Bull 57(32):4104–4110CrossRef
81.
Zurück zum Zitat Jung DS, Ryou MH, Sung YJ, Park SB, Choi JW (2013) Recycling rice husks for high-capacity lithium battery anodes. Proc Natl Acad Sci 110(30):12229–12234CrossRef Jung DS, Ryou MH, Sung YJ, Park SB, Choi JW (2013) Recycling rice husks for high-capacity lithium battery anodes. Proc Natl Acad Sci 110(30):12229–12234CrossRef
82.
Zurück zum Zitat Zhang Y-C, You Y, Xin S, Yin Y-X, Zhang J, Wang P, Zheng X-s, Cao F-F, Guo Y-G (2016) Rice husk-derived hierarchical silicon/nitrogen-doped carbon/carbon nanotube spheres as low-cost and high-capacity anodes for lithium-ion batteries. Nano Energy 25:120–127CrossRef Zhang Y-C, You Y, Xin S, Yin Y-X, Zhang J, Wang P, Zheng X-s, Cao F-F, Guo Y-G (2016) Rice husk-derived hierarchical silicon/nitrogen-doped carbon/carbon nanotube spheres as low-cost and high-capacity anodes for lithium-ion batteries. Nano Energy 25:120–127CrossRef
83.
Zurück zum Zitat Song J, Guo S, Ren D, Liu H, Kou L, Su J, Zheng P (2020) Rice husk-derived SiOx@carbon nanocomposites as a high-performance bifunctional electrode for rechargeable batteries. Ceram Int 46(8):11570–11576CrossRef Song J, Guo S, Ren D, Liu H, Kou L, Su J, Zheng P (2020) Rice husk-derived SiOx@carbon nanocomposites as a high-performance bifunctional electrode for rechargeable batteries. Ceram Int 46(8):11570–11576CrossRef
84.
Zurück zum Zitat Chu H, Wu Q, Huang J (2018) Rice husk derived silicon/carbon and silica/carbon nanocomposites as anodic materials for lithium-ion batteries. Coll Surf A 558:495–503CrossRef Chu H, Wu Q, Huang J (2018) Rice husk derived silicon/carbon and silica/carbon nanocomposites as anodic materials for lithium-ion batteries. Coll Surf A 558:495–503CrossRef
85.
Zurück zum Zitat Wang L, Xue J, Gao B, Gao P, Mou C, Li J (2014) Rice husk derived carbon–silica composites as anodes for lithium ion batteries. RSC Adv 4(110):64744–64746CrossRef Wang L, Xue J, Gao B, Gao P, Mou C, Li J (2014) Rice husk derived carbon–silica composites as anodes for lithium ion batteries. RSC Adv 4(110):64744–64746CrossRef
86.
Zurück zum Zitat Chun J, An S, Lee J (2015) Highly mesoporous silicon derived from waste iron slag for high performance lithium ion battery anodes. J Mater Chem A 3(43):21899–21906CrossRef Chun J, An S, Lee J (2015) Highly mesoporous silicon derived from waste iron slag for high performance lithium ion battery anodes. J Mater Chem A 3(43):21899–21906CrossRef
87.
Zurück zum Zitat Lee S, Kim T-H, Kim D-W, Park D-W (2017) Preparation of silicon nanopowder by recycling silicon wafer waste in radio-frequency thermal plasma process. Plasma Chem Plasma Process 37(4):967–978CrossRef Lee S, Kim T-H, Kim D-W, Park D-W (2017) Preparation of silicon nanopowder by recycling silicon wafer waste in radio-frequency thermal plasma process. Plasma Chem Plasma Process 37(4):967–978CrossRef
88.
Zurück zum Zitat Jang HD, Kim H, Chang H, Kim J, Roh KM, Choi J-H, Cho B-G, Park E, Kim H, Luo J, Huang J (2015) Aerosol-assisted extraction of silicon nanoparticles from wafer slicing waste for lithium ion batteries. Sci Rep 5(1) Jang HD, Kim H, Chang H, Kim J, Roh KM, Choi J-H, Cho B-G, Park E, Kim H, Luo J, Huang J (2015) Aerosol-assisted extraction of silicon nanoparticles from wafer slicing waste for lithium ion batteries. Sci Rep 5(1)
89.
Zurück zum Zitat Bao Q, Huang Y-H, Lan C-K, Chen B-H, Duh J-G (2015) Scalable upcycling silicon from waste slicing sludge for high-performance lithium-ion battery anodes. Electrochim Acta 173:82–90CrossRef Bao Q, Huang Y-H, Lan C-K, Chen B-H, Duh J-G (2015) Scalable upcycling silicon from waste slicing sludge for high-performance lithium-ion battery anodes. Electrochim Acta 173:82–90CrossRef
90.
Zurück zum Zitat Chou C-Y, Kuo J-R, Yen S-C (2018) Silicon-based composite negative electrode prepared from recycled silicon-slicing slurries and lignin/lignocellulose for Li-ion cells. ACS Sustain Chem Eng 6(4):4759–4766CrossRef Chou C-Y, Kuo J-R, Yen S-C (2018) Silicon-based composite negative electrode prepared from recycled silicon-slicing slurries and lignin/lignocellulose for Li-ion cells. ACS Sustain Chem Eng 6(4):4759–4766CrossRef
91.
Zurück zum Zitat Li C, Liu C, Wang W, Mutlu Z, Bell J, Ahmed K, Ye R, Ozkan M, Ozkan CS (2017) Silicon derived from glass bottles as anode materials for lithium ion full cell batteries. Sci Rep 7(1) Li C, Liu C, Wang W, Mutlu Z, Bell J, Ahmed K, Ye R, Ozkan M, Ozkan CS (2017) Silicon derived from glass bottles as anode materials for lithium ion full cell batteries. Sci Rep 7(1)
92.
Zurück zum Zitat Wagner NP, Tron A, Tolchard JR, Noia G, Bellmann MP (2019) Silicon anodes for lithium-ion batteries produced from recovered kerf powders. J Power Sources 414:486–494CrossRef Wagner NP, Tron A, Tolchard JR, Noia G, Bellmann MP (2019) Silicon anodes for lithium-ion batteries produced from recovered kerf powders. J Power Sources 414:486–494CrossRef
93.
Zurück zum Zitat Kim J, Kim SY, Yang C-M, Lee GW (2019) Possibility of recycling SiOx particles collected at silicon ingot production process as an anode material for lithium ion batteries. Sci Rep 9(1) Kim J, Kim SY, Yang C-M, Lee GW (2019) Possibility of recycling SiOx particles collected at silicon ingot production process as an anode material for lithium ion batteries. Sci Rep 9(1)
94.
Zurück zum Zitat Eshraghi N, Berardo L, Schrijnemakers A, Delaval V, Shaibani M, Majumder M, Cloots R, Vertruyen B, Boschini F, Mahmoud A (2020) Recovery of nano-structured silicon from end-of-life photovoltaic wafers with value-added applications in lithium-ion battery. ACS Sustain Chem Eng 8(15):5868–5879CrossRef Eshraghi N, Berardo L, Schrijnemakers A, Delaval V, Shaibani M, Majumder M, Cloots R, Vertruyen B, Boschini F, Mahmoud A (2020) Recovery of nano-structured silicon from end-of-life photovoltaic wafers with value-added applications in lithium-ion battery. ACS Sustain Chem Eng 8(15):5868–5879CrossRef
95.
Zurück zum Zitat Contestabile M, Panero S, Scrosati B (1999) A laboratory-scale lithium battery recycling process. This work has been presented as an invited talk at the 4th international battery recycling congress, Hamburg, Germany, 1–3 July, 1998. J Power Sources 83(1–2):75–78 Contestabile M, Panero S, Scrosati B (1999) A laboratory-scale lithium battery recycling process. This work has been presented as an invited talk at the 4th international battery recycling congress, Hamburg, Germany, 1–3 July, 1998. J Power Sources 83(1–2):75–78
96.
Zurück zum Zitat Castillo S (2002) Advances in the recovering of spent lithium battery compounds. J Power Sources 112(1):247–254CrossRef Castillo S (2002) Advances in the recovering of spent lithium battery compounds. J Power Sources 112(1):247–254CrossRef
97.
Zurück zum Zitat Kim HS, Shin EJ (2013) Re-synthesis and electrochemical characteristics of LiFePO4 cathode materials recycled from scrap electrodes. Bull Korean Chem Soc 34(3):851–855CrossRef Kim HS, Shin EJ (2013) Re-synthesis and electrochemical characteristics of LiFePO4 cathode materials recycled from scrap electrodes. Bull Korean Chem Soc 34(3):851–855CrossRef
98.
Zurück zum Zitat Li H, Xing S, Liu Y, Li F, Guo H, Kuang G (2017) Recovery of lithium, iron, and phosphorus from spent LiFePO4 batteries using stoichiometric sulfuric acid leaching system. ACS Sustain Chem Eng 5(9):8017–8024CrossRef Li H, Xing S, Liu Y, Li F, Guo H, Kuang G (2017) Recovery of lithium, iron, and phosphorus from spent LiFePO4 batteries using stoichiometric sulfuric acid leaching system. ACS Sustain Chem Eng 5(9):8017–8024CrossRef
99.
Zurück zum Zitat Freitas MBJG, Rosalém SF (2005) Electrochemical recovery of cadmium from spent Ni–Cd batteries. J Power Sources 139(1–2):366–370CrossRef Freitas MBJG, Rosalém SF (2005) Electrochemical recovery of cadmium from spent Ni–Cd batteries. J Power Sources 139(1–2):366–370CrossRef
100.
Zurück zum Zitat Freitas MBJG, Penha TR, Sirtoli S (2007) Chemical and electrochemical recycling of the negative electrodes from spent Ni–Cd batteries. J Power Sources 163(2):1114–1119CrossRef Freitas MBJG, Penha TR, Sirtoli S (2007) Chemical and electrochemical recycling of the negative electrodes from spent Ni–Cd batteries. J Power Sources 163(2):1114–1119CrossRef
101.
Zurück zum Zitat Rozário A, Silva e Silva RK, Freitas MBJG (2006) Recycling of nickel from NiOOH/Ni(OH)2 electrodes of spent Ni–Cd batteries. J Power Sources 158(1):754–759 Rozário A, Silva e Silva RK, Freitas MBJG (2006) Recycling of nickel from NiOOH/Ni(OH)2 electrodes of spent Ni–Cd batteries. J Power Sources 158(1):754–759
102.
Zurück zum Zitat Reddy BR, Neela Priya D, Venkateswara Rao S, Radhika P (2005) Solvent extraction and separation of Cd(II), Ni(II) and Co(II) from chloride leach liquors of spent Ni–Cd batteries using commercial organo-phosphorus extractants. Hydrometallurgy 77(3–4):253–261CrossRef Reddy BR, Neela Priya D, Venkateswara Rao S, Radhika P (2005) Solvent extraction and separation of Cd(II), Ni(II) and Co(II) from chloride leach liquors of spent Ni–Cd batteries using commercial organo-phosphorus extractants. Hydrometallurgy 77(3–4):253–261CrossRef
103.
Zurück zum Zitat Lacerda VG, Mageste AB, Santos IJB, da Silva LHM, da Silva MdCH (2009) Separation of Cd and Ni from Ni–Cd batteries by an environmentally safe methodology employing aqueous two-phase systems. J Power Sources 193(2):908–913CrossRef Lacerda VG, Mageste AB, Santos IJB, da Silva LHM, da Silva MdCH (2009) Separation of Cd and Ni from Ni–Cd batteries by an environmentally safe methodology employing aqueous two-phase systems. J Power Sources 193(2):908–913CrossRef
104.
Zurück zum Zitat Mahandra H, Singh R, Gupta B (2018) Recycling of Zn–C and Ni–Cd spent batteries using Cyphos IL 104 via hydrometallurgical route. J Clean Prod 172:133–142CrossRef Mahandra H, Singh R, Gupta B (2018) Recycling of Zn–C and Ni–Cd spent batteries using Cyphos IL 104 via hydrometallurgical route. J Clean Prod 172:133–142CrossRef
105.
Zurück zum Zitat Huang K, Li J, Xu Z (2010) Characterization and recycling of cadmium from waste nickel–cadmium batteries. Waste Manag 30(11):2292–2298CrossRef Huang K, Li J, Xu Z (2010) Characterization and recycling of cadmium from waste nickel–cadmium batteries. Waste Manag 30(11):2292–2298CrossRef
106.
Zurück zum Zitat Assefi M, Maroufi S, Mayyas M, Sahajwalla V (2018) Recycling of Ni–Cd batteries by selective isolation and hydrothermal synthesis of porous NiO nanocuboid. J Environ Chem Eng 6(4):4671–4675CrossRef Assefi M, Maroufi S, Mayyas M, Sahajwalla V (2018) Recycling of Ni–Cd batteries by selective isolation and hydrothermal synthesis of porous NiO nanocuboid. J Environ Chem Eng 6(4):4671–4675CrossRef
107.
Zurück zum Zitat Assefi M, Maroufi S, Yamauchi Y, Sahajwalla V (2020) Pyrometallurgical recycling of Li-ion, Ni–Cd and Ni–MH batteries: a minireview. Curr Opin Green Sustain Chem 24:26–31CrossRef Assefi M, Maroufi S, Yamauchi Y, Sahajwalla V (2020) Pyrometallurgical recycling of Li-ion, Ni–Cd and Ni–MH batteries: a minireview. Curr Opin Green Sustain Chem 24:26–31CrossRef
108.
Zurück zum Zitat Aboelazm EAA, Ali GAM, Chong KF (2018) Cobalt oxide supercapacitor electrode recovered from spent lithium-ion battery. Chem Adv Mater 3:67–74 Aboelazm EAA, Ali GAM, Chong KF (2018) Cobalt oxide supercapacitor electrode recovered from spent lithium-ion battery. Chem Adv Mater 3:67–74
109.
Zurück zum Zitat Ali GAM, Tan LL, Jose R, Yusoff MM, Chong KF (2014) Electrochemical performance studies of MnO2 nanoflowers recovered from spent battery. Mater Res Bull 60:5–9CrossRef Ali GAM, Tan LL, Jose R, Yusoff MM, Chong KF (2014) Electrochemical performance studies of MnO2 nanoflowers recovered from spent battery. Mater Res Bull 60:5–9CrossRef
110.
Zurück zum Zitat Ali GAM, Yusoff MM, Feng CK (2015) Electrochemical properties of electrodeposited MnO2 nanoparticles. Adv Mater Res 1113:550–553CrossRef Ali GAM, Yusoff MM, Feng CK (2015) Electrochemical properties of electrodeposited MnO2 nanoparticles. Adv Mater Res 1113:550–553CrossRef
111.
Zurück zum Zitat Ali GAM, Yusoff MM, Shaaban ER, Chong KF (2017) High performance MnO2 nanoflower supercapacitor electrode by electrochemical recycling of spent batteries. Ceram Int 43:8440–8448CrossRef Ali GAM, Yusoff MM, Shaaban ER, Chong KF (2017) High performance MnO2 nanoflower supercapacitor electrode by electrochemical recycling of spent batteries. Ceram Int 43:8440–8448CrossRef
112.
Zurück zum Zitat Aboelazm EAA, Ali GAM, Algarni H, Yin H, Zhong YL, Chong KF (2018) Magnetic electrodeposition of the hierarchical cobalt oxide nanostructure from spent lithium-ion batteries: its application as a supercapacitor electrode. J Phys Chem C 122(23):12200–12206CrossRef Aboelazm EAA, Ali GAM, Algarni H, Yin H, Zhong YL, Chong KF (2018) Magnetic electrodeposition of the hierarchical cobalt oxide nanostructure from spent lithium-ion batteries: its application as a supercapacitor electrode. J Phys Chem C 122(23):12200–12206CrossRef
113.
Zurück zum Zitat Müller T, Friedrich B (2006) Development of a recycling process for nickel–metal hydride batteries. J Power Sources 158(2):1498–1509CrossRef Müller T, Friedrich B (2006) Development of a recycling process for nickel–metal hydride batteries. J Power Sources 158(2):1498–1509CrossRef
114.
Zurück zum Zitat Maroufi S, Nekouei RK, Hossain R, Assefi M, Sahajwalla V (2018) Recovery of rare earth (i.e., La, Ce, Nd, and Pr) oxides from end-of-life Ni–MH battery via thermal isolation. ACS Sustain Chem Eng 6(9):11811–11818 Maroufi S, Nekouei RK, Hossain R, Assefi M, Sahajwalla V (2018) Recovery of rare earth (i.e., La, Ce, Nd, and Pr) oxides from end-of-life Ni–MH battery via thermal isolation. ACS Sustain Chem Eng 6(9):11811–11818
115.
Zurück zum Zitat Jiang Y-J, Deng Y-C, Bu W-G (2015) Pyrometallurgical extraction of valuable elements in Ni–Metal hydride battery electrode materials. Metall Mater Trans B 46(5):2153–2157CrossRef Jiang Y-J, Deng Y-C, Bu W-G (2015) Pyrometallurgical extraction of valuable elements in Ni–Metal hydride battery electrode materials. Metall Mater Trans B 46(5):2153–2157CrossRef
116.
Zurück zum Zitat Agarwal V, Khalid MK, Porvali A, Wilson BP, Lundström M (2019) Recycling of spent NiMH batteries: Integration of battery leach solution into primary Ni production using solvent extraction. Sustain Mater Technol 22:e00121 Agarwal V, Khalid MK, Porvali A, Wilson BP, Lundström M (2019) Recycling of spent NiMH batteries: Integration of battery leach solution into primary Ni production using solvent extraction. Sustain Mater Technol 22:e00121
117.
Zurück zum Zitat Mantuano DP, Dorella G, Elias RCA, Mansur MB (2006) Analysis of a hydrometallurgical route to recover base metals from spent rechargeable batteries by liquid–liquid extraction with Cyanex 272. J Power Sources 159(2):1510–1518CrossRef Mantuano DP, Dorella G, Elias RCA, Mansur MB (2006) Analysis of a hydrometallurgical route to recover base metals from spent rechargeable batteries by liquid–liquid extraction with Cyanex 272. J Power Sources 159(2):1510–1518CrossRef
118.
Zurück zum Zitat Ma Y, Qiu K (2015) Recovery of lead from lead paste in spent lead acid battery by hydrometallurgical desulfurization and vacuum thermal reduction. Waste Manag 40:151–156CrossRef Ma Y, Qiu K (2015) Recovery of lead from lead paste in spent lead acid battery by hydrometallurgical desulfurization and vacuum thermal reduction. Waste Manag 40:151–156CrossRef
119.
Zurück zum Zitat Zhu X, Li L, Sun X, Yang D, Gao L, Liu J, Kumar RV, Yang J (2012) Preparation of basic lead oxide from spent lead acid battery paste via chemical conversion. Hydrometallurgy 117–118:24–31CrossRef Zhu X, Li L, Sun X, Yang D, Gao L, Liu J, Kumar RV, Yang J (2012) Preparation of basic lead oxide from spent lead acid battery paste via chemical conversion. Hydrometallurgy 117–118:24–31CrossRef
120.
Zurück zum Zitat Pan J, Zhang C, Sun Y, Wang Z, Yang Y (2012) A new process of lead recovery from waste lead-acid batteries by electrolysis of alkaline lead oxide solution. Electrochem Commun 19:70–72CrossRef Pan J, Zhang C, Sun Y, Wang Z, Yang Y (2012) A new process of lead recovery from waste lead-acid batteries by electrolysis of alkaline lead oxide solution. Electrochem Commun 19:70–72CrossRef
121.
Zurück zum Zitat Yang J, Zhu X, Kumar RV (2011) Ethylene glycol-mediated synthesis of PbO nanocrystal from PbSO4: a major component of lead paste in spent lead acid battery. Mater Chem Phys 131(1–2):336–342CrossRef Yang J, Zhu X, Kumar RV (2011) Ethylene glycol-mediated synthesis of PbO nanocrystal from PbSO4: a major component of lead paste in spent lead acid battery. Mater Chem Phys 131(1–2):336–342CrossRef
122.
Zurück zum Zitat Pan J, Zhang X, Sun Y, Song S, Li W, Wan P (2016) Preparation of high purity lead oxide from spent lead acid batteries via desulfurization and recrystallization in sodium hydroxide. Ind Eng Chem Res 55(7):2059–2068CrossRef Pan J, Zhang X, Sun Y, Song S, Li W, Wan P (2016) Preparation of high purity lead oxide from spent lead acid batteries via desulfurization and recrystallization in sodium hydroxide. Ind Eng Chem Res 55(7):2059–2068CrossRef
123.
Zurück zum Zitat Hu Y, Yang J, Hu J, Wang J, Liang S, Hou H, Wu X, Liu B, Yu W, He X, Kumar RV (2018) Lead-carbon batteries: synthesis of nanostructured PbO@C composite derived from spent lead-acid battery for next-generation lead-carbon battery. Adv Func Mater 28(9):1870056 Hu Y, Yang J, Hu J, Wang J, Liang S, Hou H, Wu X, Liu B, Yu W, He X, Kumar RV (2018) Lead-carbon batteries: synthesis of nanostructured PbO@C composite derived from spent lead-acid battery for next-generation lead-carbon battery. Adv Func Mater 28(9):1870056
124.
Zurück zum Zitat Zhou H, Su M, Lee P-H, Shih K (2017) Synthesis of submicron lead oxide particles from the simulated spent lead paste for battery anodes. J Alloy Compd 690:101–107CrossRef Zhou H, Su M, Lee P-H, Shih K (2017) Synthesis of submicron lead oxide particles from the simulated spent lead paste for battery anodes. J Alloy Compd 690:101–107CrossRef
125.
Zurück zum Zitat Xi G, Li Y, Liu Y (2004) Study on preparation of manganese–zinc ferrites using spent Zn–Mn batteries. Mater Lett 58(7–8):1164–1167CrossRef Xi G, Li Y, Liu Y (2004) Study on preparation of manganese–zinc ferrites using spent Zn–Mn batteries. Mater Lett 58(7–8):1164–1167CrossRef
126.
Zurück zum Zitat Nan J, Han D, Cui M, Yang M, Pan L (2006) Recycling spent zinc manganese dioxide batteries through synthesizing Zn–Mn ferrite magnetic materials. J Hazard Mater 133(1–3):257–261CrossRef Nan J, Han D, Cui M, Yang M, Pan L (2006) Recycling spent zinc manganese dioxide batteries through synthesizing Zn–Mn ferrite magnetic materials. J Hazard Mater 133(1–3):257–261CrossRef
127.
Zurück zum Zitat Kanemaru T, Iwasaki T, Suda S, Kitagawa T (1998) Preparation of ferrite from used dry cells. Google Patents Kanemaru T, Iwasaki T, Suda S, Kitagawa T (1998) Preparation of ferrite from used dry cells. Google Patents
128.
Zurück zum Zitat Deep A, Kumar K, Kumar P, Kumar P, Sharma AL, Gupta B, Bharadwaj LM (2011) Recovery of pure ZnO nanoparticles from spent Zn–MnO2 alkaline batteries. Environ Sci Technol 45(24):10551–10556CrossRef Deep A, Kumar K, Kumar P, Kumar P, Sharma AL, Gupta B, Bharadwaj LM (2011) Recovery of pure ZnO nanoparticles from spent Zn–MnO2 alkaline batteries. Environ Sci Technol 45(24):10551–10556CrossRef
129.
Zurück zum Zitat Deep A, Sharma AL, Mohanta GC, Kumar P, Kim K-H (2016) A facile chemical route for recovery of high quality zinc oxide nanoparticles from spent alkaline batteries. Waste Manag 51:190–195CrossRef Deep A, Sharma AL, Mohanta GC, Kumar P, Kim K-H (2016) A facile chemical route for recovery of high quality zinc oxide nanoparticles from spent alkaline batteries. Waste Manag 51:190–195CrossRef
130.
Zurück zum Zitat Xiang X, Xia F, Zhan L, Xie B (2015) Preparation of zinc nano structured particles from spent zinc manganese batteries by vacuum separation and inert gas condensation. Sep Purif Technol 142:227–233CrossRef Xiang X, Xia F, Zhan L, Xie B (2015) Preparation of zinc nano structured particles from spent zinc manganese batteries by vacuum separation and inert gas condensation. Sep Purif Technol 142:227–233CrossRef
131.
Zurück zum Zitat Deng J, Wang X, Duan X, Liu P (2015) Facile preparation of MnO2/graphene nanocomposites with spent battery powder for electrochemical energy storage. ACS Sustain Chem Eng 3(7):1330–1338CrossRef Deng J, Wang X, Duan X, Liu P (2015) Facile preparation of MnO2/graphene nanocomposites with spent battery powder for electrochemical energy storage. ACS Sustain Chem Eng 3(7):1330–1338CrossRef
132.
Zurück zum Zitat Ali GAM, Yusoff MM, Algarni H, Chong KF (2018) One-step electrosynthesis of MnO2/rGO nanocomposite and its enhanced electrochemical performance. Ceram Int 44(7):7799–7807 Ali GAM, Yusoff MM, Algarni H, Chong KF (2018) One-step electrosynthesis of MnO2/rGO nanocomposite and its enhanced electrochemical performance. Ceram Int 44(7):7799–7807
133.
Zurück zum Zitat Ali GAM (2020) Recycled MnO2 nanoflowers and graphene nanosheets for low-cost and high performance asymmetric supercapacitor. J Electron Mater 49(9):5411–5421 Ali GAM (2020) Recycled MnO2 nanoflowers and graphene nanosheets for low-cost and high performance asymmetric supercapacitor. J Electron Mater 49(9):5411–5421
134.
Zurück zum Zitat Ferella F, De Michelis I, Vegliò F (2008) Process for the recycling of alkaline and zinc–carbon spent batteries. J Power Sources 183(2):805–811CrossRef Ferella F, De Michelis I, Vegliò F (2008) Process for the recycling of alkaline and zinc–carbon spent batteries. J Power Sources 183(2):805–811CrossRef
135.
Zurück zum Zitat Kim TH, Senanayake G, Kang JG, Sohn JS, Rhee KI, Lee SW, Shin SM (2009) Reductive acid leaching of spent zinc–carbon batteries and oxidative precipitation of Mn–Zn ferrite nanoparticles. Hydrometallurgy 96(1–2):154–158CrossRef Kim TH, Senanayake G, Kang JG, Sohn JS, Rhee KI, Lee SW, Shin SM (2009) Reductive acid leaching of spent zinc–carbon batteries and oxidative precipitation of Mn–Zn ferrite nanoparticles. Hydrometallurgy 96(1–2):154–158CrossRef
136.
Zurück zum Zitat Gabal MA, Al-luhaibi RS, Al Angari YM (2014) Recycling spent zinc–carbon batteries through synthesizing nano-crystalline Mn–Zn ferrites. Powder Technol 258:32–37CrossRef Gabal MA, Al-luhaibi RS, Al Angari YM (2014) Recycling spent zinc–carbon batteries through synthesizing nano-crystalline Mn–Zn ferrites. Powder Technol 258:32–37CrossRef
Metadaten
Titel
Recovery of Nanomaterials for Battery Applications
verfasst von
Hasna Aziam
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-68031-2_5

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.