Skip to main content

2021 | OriginalPaper | Buchkapitel

Recurrent Multigraph Integrator Network for Predicting the Evolution of Population-Driven Brain Connectivity Templates

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Learning how to estimate a connectional brain template (CBT) from a population of brain multigraphs, where each graph (e.g., functional) quantifies a particular relationship between pairs of brain regions of interest (ROIs), allows to pin down the unique connectivity patterns shared across individuals. Specifically, a CBT is viewed as an integral representation of a set of highly heterogeneous graphs and ideally meeting the centeredness (i.e., minimum distance to all graphs in the population) and discriminativeness (i.e., distinguishes the healthy from the disordered population) criteria. So far, existing works have been limited to only integrating and fusing a population of brain multigraphs acquired at a single timepoint. In this paper, we unprecedentedly tackle the question: “Given a baseline multigraph population, can we learn how to integrate and forecast its CBT representations at follow-up timepoints?” Addressing such question is of paramount in predicting common alternations across healthy and disordered populations. To fill this gap, we propose Recurrent Multigraph Integrator Network (ReMI-Net), the first graph recurrent neural network which infers the baseline CBT of an input population \(t_1\) and predicts its longitudinal evolution over time (\(t_i > t_1\)). Our ReMI-Net is composed of recurrent neural blocks with graph convolutional layers using a cross-node message passing to first learn hidden-states embeddings of each CBT node (i.e., brain region of interest) and then predict its evolution at the consecutive timepoint. Moreover, we design a novel time-dependent loss to regularize the CBT evolution trajectory over time and further introduce a cyclic recursion and learnable normalization layer to generate well-centered CBTs from time-dependent hidden-state embeddings. Finally, we derive the CBT adjacency matrix from the learned hidden state graph representation. ReMI-Net significantly outperformed benchmark methods in both centeredness and discriminative connectional biomarker discovery criteria in demented patients. Our ReMI-Net GitHub code is available at https://​github.​com/​basiralab/​ReMI-Net.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Bassett, D.S., Sporns, O.: Network neuroscience. Nat. Neurosci. 20, 353 (2017)CrossRef Bassett, D.S., Sporns, O.: Network neuroscience. Nat. Neurosci. 20, 353 (2017)CrossRef
2.
Zurück zum Zitat Fornito, A., Zalesky, A., Breakspear, M.: The connectomics of brain disorders. Nat. Rev. Neurosci. 16, 159–172 (2015)CrossRef Fornito, A., Zalesky, A., Breakspear, M.: The connectomics of brain disorders. Nat. Rev. Neurosci. 16, 159–172 (2015)CrossRef
3.
Zurück zum Zitat Van den Heuvel, M.P., Sporns, O.: A cross-disorder connectome landscape of brain dysconnectivity. Nat. Rev. Neurosci. 20, 435–446 (2019)CrossRef Van den Heuvel, M.P., Sporns, O.: A cross-disorder connectome landscape of brain dysconnectivity. Nat. Rev. Neurosci. 20, 435–446 (2019)CrossRef
4.
Zurück zum Zitat Mheich, A., Wendling, F., Hassan, M.: Brain network similarity: methods and applications. Netw. Neurosci. 4, 507–527 (2020)CrossRef Mheich, A., Wendling, F., Hassan, M.: Brain network similarity: methods and applications. Netw. Neurosci. 4, 507–527 (2020)CrossRef
5.
Zurück zum Zitat Essen, D., et al.: The human connectome project: a data acquisition perspective. Neuroimage 62, 2222–31 (2012)CrossRef Essen, D., et al.: The human connectome project: a data acquisition perspective. Neuroimage 62, 2222–31 (2012)CrossRef
6.
Zurück zum Zitat Van Essen, D., Glasser, M.: The human connectome project: progress and prospects. In: Cerebrum: The Dana Forum on Brain Science 2016 (2016) Van Essen, D., Glasser, M.: The human connectome project: progress and prospects. In: Cerebrum: The Dana Forum on Brain Science 2016 (2016)
7.
Zurück zum Zitat Mueller, S., et al.: The Alzheimer’s disease neuroimaging initiative. Neuroimaging Clin. N. Am. 15, 869 (2005) Mueller, S., et al.: The Alzheimer’s disease neuroimaging initiative. Neuroimaging Clin. N. Am. 15, 869 (2005)
8.
Zurück zum Zitat Dhifallah, S., Rekik, I., Initiative, A.D.N., et al.: Estimation of connectional brain templates using selective multi-view network normalization. Med. Image Anal. 59, 101567 (2020)CrossRef Dhifallah, S., Rekik, I., Initiative, A.D.N., et al.: Estimation of connectional brain templates using selective multi-view network normalization. Med. Image Anal. 59, 101567 (2020)CrossRef
11.
Zurück zum Zitat Wang, B., et al.: Similarity network fusion for aggregating data types on a genomic scale. Nat. Methods 11, 333–337 (2014)CrossRef Wang, B., et al.: Similarity network fusion for aggregating data types on a genomic scale. Nat. Methods 11, 333–337 (2014)CrossRef
12.
14.
15.
Zurück zum Zitat Ba, J.L., Kiros, J.R., Hinton, G.E.: Layer normalization (2016) Ba, J.L., Kiros, J.R., Hinton, G.E.: Layer normalization (2016)
16.
Zurück zum Zitat Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., Dahl, G.E.: Neural message passing for quantum chemistry. In: International Conference on Machine Learning, PMLR, pp. 1263–1272 (2017) Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., Dahl, G.E.: Neural message passing for quantum chemistry. In: International Conference on Machine Learning, PMLR, pp. 1263–1272 (2017)
17.
Zurück zum Zitat Battaglia, P.W., Pascanu, R., Lai, M., Rezende, D., Kavukcuoglu, K.: Interaction networks for learning about objects, relations and physics (2016) Battaglia, P.W., Pascanu, R., Lai, M., Rezende, D., Kavukcuoglu, K.: Interaction networks for learning about objects, relations and physics (2016)
18.
Zurück zum Zitat Yu, Y., Si, X., Hu, C., Zhang, J.: A review of recurrent neural networks: LSTM cells and network architectures. Neural Comput. 31, 1235–1270 (2019)MathSciNetCrossRef Yu, Y., Si, X., Hu, C., Zhang, J.: A review of recurrent neural networks: LSTM cells and network architectures. Neural Comput. 31, 1235–1270 (2019)MathSciNetCrossRef
19.
Zurück zum Zitat Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555 (2014) Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:​1412.​3555 (2014)
20.
Zurück zum Zitat Varma, M., Babu, B.: More generality in efficient multiple kernel learning, p. 134 (2009) Varma, M., Babu, B.: More generality in efficient multiple kernel learning, p. 134 (2009)
21.
Zurück zum Zitat Yang, H., et al.: Study of brain morphology change in Alzheimer’s disease and amnestic mild cognitive impairment compared with normal controls. Gen. Psychiatry 32, e100005 (2019)CrossRef Yang, H., et al.: Study of brain morphology change in Alzheimer’s disease and amnestic mild cognitive impairment compared with normal controls. Gen. Psychiatry 32, e100005 (2019)CrossRef
22.
Zurück zum Zitat Zhou, M., Zhang, F., Zhao, L., Qian, J., Dong, C.: Entorhinal cortex: a good biomarker of mild cognitive impairment and mild Alzheimer’s disease. Rev. Neurosci. 27, 185–195 (2016)CrossRef Zhou, M., Zhang, F., Zhao, L., Qian, J., Dong, C.: Entorhinal cortex: a good biomarker of mild cognitive impairment and mild Alzheimer’s disease. Rev. Neurosci. 27, 185–195 (2016)CrossRef
23.
Zurück zum Zitat Howett, D., et al.: Differentiation of mild cognitive impairment using an entorhinal cortex-based test of virtual reality navigation. Brain 142, 1751–1766 (2019)CrossRef Howett, D., et al.: Differentiation of mild cognitive impairment using an entorhinal cortex-based test of virtual reality navigation. Brain 142, 1751–1766 (2019)CrossRef
Metadaten
Titel
Recurrent Multigraph Integrator Network for Predicting the Evolution of Population-Driven Brain Connectivity Templates
verfasst von
Oytun Demirbilek
Islem Rekik
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-87234-2_55