Skip to main content
Erschienen in:

19.06.2023

Recursive Green’s functions optimized for atomistic modelling of large superlattice-based devices

verfasst von: V. Hung Nguyen, J. -C. Charlier

Erschienen in: Journal of Computational Electronics | Ausgabe 5/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The Green’s function method is recognized to be a very powerful tool for modelling quantum transport in nanoscale electronic devices. As atomistic calculations are generally expensive, numerical methods and related algorithms have been developed accordingly to optimize their computation cost. In particular, recursive techniques have been efficiently applied within the Green’s function calculation approach. Recently, with the discovery of Moiré materials, several attractive superlattices have been explored using these recursive Green’s function techniques. However, numerical difficulty issues were reported as most of these superlattices have relatively large supercells, and consequently a huge number of atoms to be considered. In this article, improvements to solve these issues are proposed in order to keep optimizing the recursive Green’s function calculations. These improvements make the electronic structure calculations feasible and efficient in modelling large superlattice-based devices. As an illustrative example, twisted bilayer graphene superlattices are computed and presented to demonstrate the efficiency of the method.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Granzner, R., Polyakov, V.M., Schwierz, F., Kittler, M., Luyken, R.J., Rösner, W., Städele, M.: Simulation of nanoscale MOSFETs using modified drift-diffusion and hydrodynamic models and comparison with monte carlo results. Microelectron. Eng. 83(2), 241–246 (2006) Granzner, R., Polyakov, V.M., Schwierz, F., Kittler, M., Luyken, R.J., Rösner, W., Städele, M.: Simulation of nanoscale MOSFETs using modified drift-diffusion and hydrodynamic models and comparison with monte carlo results. Microelectron. Eng. 83(2), 241–246 (2006)
2.
Zurück zum Zitat Fan, Z., Uppstu, A., Siro, T., Harju, A.: Efficient linear-scaling quantum transport calculations on graphics processing units and applications on electron transport in graphene. Comput. Phys. Commun. 185(1), 28–39 (2014)MathSciNetMATH Fan, Z., Uppstu, A., Siro, T., Harju, A.: Efficient linear-scaling quantum transport calculations on graphics processing units and applications on electron transport in graphene. Comput. Phys. Commun. 185(1), 28–39 (2014)MathSciNetMATH
3.
Zurück zum Zitat Fan, Z., Garcia, J.H., Cummings, A.W., Barrios-Vargas, J.E., Panhans, M., Harju, A., Ortmann, F., Roche, S.: Linear scaling quantum transport methodologies. Phys. Rep. 903, 1–69 (2021)MathSciNetMATH Fan, Z., Garcia, J.H., Cummings, A.W., Barrios-Vargas, J.E., Panhans, M., Harju, A., Ortmann, F., Roche, S.: Linear scaling quantum transport methodologies. Phys. Rep. 903, 1–69 (2021)MathSciNetMATH
4.
Zurück zum Zitat Jacoboni, C., Reggiani, L.: The monte Carlo method for the solution of charge transport in semiconductors with applications to covalent materials. Rev. Mod. Phys. 55, 645–705 (1983) Jacoboni, C., Reggiani, L.: The monte Carlo method for the solution of charge transport in semiconductors with applications to covalent materials. Rev. Mod. Phys. 55, 645–705 (1983)
5.
Zurück zum Zitat Hong, S.-M., Jungemann, C.: A fully coupled scheme for a Boltzmann-poisson equation solver based on a spherical harmonics expansion. J. Comput. Electron. 8, 225–241 (2009) Hong, S.-M., Jungemann, C.: A fully coupled scheme for a Boltzmann-poisson equation solver based on a spherical harmonics expansion. J. Comput. Electron. 8, 225–241 (2009)
6.
Zurück zum Zitat Datta, S.: Electronic Transport in Mesoscopic Systems. Cambridge Studies in Semiconductor Physics and Microelectronic Engineering. Cambridge University Press, Cambridge (1995) Datta, S.: Electronic Transport in Mesoscopic Systems. Cambridge Studies in Semiconductor Physics and Microelectronic Engineering. Cambridge University Press, Cambridge (1995)
7.
Zurück zum Zitat Zhang, W., Fisher, T.S., Mingo, N.: The atomistic Green’s function method: an efficient simulation approach for nanoscale phonon transport. Numer. Heat Transfer Part B Fund. 51(4), 333–349 (2007) Zhang, W., Fisher, T.S., Mingo, N.: The atomistic Green’s function method: an efficient simulation approach for nanoscale phonon transport. Numer. Heat Transfer Part B Fund. 51(4), 333–349 (2007)
8.
Zurück zum Zitat Mahdi, P.: The Non-Equilibrium Green’s Function Method for Nanoscale Device Simulation. Springer-Verlag, New York (2014) Mahdi, P.: The Non-Equilibrium Green’s Function Method for Nanoscale Device Simulation. Springer-Verlag, New York (2014)
9.
Zurück zum Zitat Lewenkopf, C.H., Mucciolo, E.R.: The recursive Green’s function method for graphene. J. Comput. Electron. 12(2), 203–231 (2013) Lewenkopf, C.H., Mucciolo, E.R.: The recursive Green’s function method for graphene. J. Comput. Electron. 12(2), 203–231 (2013)
10.
Zurück zum Zitat Niquet, Y.-M., Nguyen, V.-H., Triozon, F., Duchemin, I., Nier, O., Rideau, D.: Quantum calculations of the carrier mobility: methodology, Matthiessen’s rule, and comparison with semi-classical approaches. J. Appl. Phys. 115(5), 054512 (2014) Niquet, Y.-M., Nguyen, V.-H., Triozon, F., Duchemin, I., Nier, O., Rideau, D.: Quantum calculations of the carrier mobility: methodology, Matthiessen’s rule, and comparison with semi-classical approaches. J. Appl. Phys. 115(5), 054512 (2014)
11.
Zurück zum Zitat Lake, R., Klimeck, G., Bowen, R.C., Jovanovic, D.: Single and multiband modeling of quantum electron transport through layered semiconductor devices. J. Appl. Phys. 81(12), 7845–7869 (1997) Lake, R., Klimeck, G., Bowen, R.C., Jovanovic, D.: Single and multiband modeling of quantum electron transport through layered semiconductor devices. J. Appl. Phys. 81(12), 7845–7869 (1997)
12.
Zurück zum Zitat Svizhenko, A., Anantram, M.P., Govindan, T.R., Biegel, B., Venugopal, R.: Two-dimensional quantum mechanical modeling of nanotransistors. J. Appl. Phys. 91(4), 2343–2354 (2002) Svizhenko, A., Anantram, M.P., Govindan, T.R., Biegel, B., Venugopal, R.: Two-dimensional quantum mechanical modeling of nanotransistors. J. Appl. Phys. 91(4), 2343–2354 (2002)
13.
Zurück zum Zitat Li, S., Ahmed, S., Darve, E.: Fast inverse using nested dissection for NEGF. J. Comput. Electron. 6, 187–190 (2007) Li, S., Ahmed, S., Darve, E.: Fast inverse using nested dissection for NEGF. J. Comput. Electron. 6, 187–190 (2007)
14.
Zurück zum Zitat Kazymyrenko, K., Waintal, X.: Knitting algorithm for calculating green functions in quantum systems. Phys. Rev. B 77, 115119 (2008) Kazymyrenko, K., Waintal, X.: Knitting algorithm for calculating green functions in quantum systems. Phys. Rev. B 77, 115119 (2008)
15.
Zurück zum Zitat Anantram, M.P., Lundstrom, M.S., Nikonov, D.E.: Modeling of nanoscale devices. Proc. IEEE 96(9), 1511–1550 (2008) Anantram, M.P., Lundstrom, M.S., Nikonov, D.E.: Modeling of nanoscale devices. Proc. IEEE 96(9), 1511–1550 (2008)
16.
Zurück zum Zitat Cauley, S., Luisier, M., Balakrishnan, V., Klimeck, G., Koh, C.-K.: Distributed non-equilibrium green’s function algorithms for the simulation of nanoelectronic devices with scattering. J. Appl. Phys. 110(4), 043713 (2011) Cauley, S., Luisier, M., Balakrishnan, V., Klimeck, G., Koh, C.-K.: Distributed non-equilibrium green’s function algorithms for the simulation of nanoelectronic devices with scattering. J. Appl. Phys. 110(4), 043713 (2011)
17.
Zurück zum Zitat Do, V.-N.: Non-equilibrium green function method: theory and application in simulation of nanometer electronic devices. Adv. Nat. Sci: Nanosci. Nanotechnol. 5(3), 033001 (2014) Do, V.-N.: Non-equilibrium green function method: theory and application in simulation of nanometer electronic devices. Adv. Nat. Sci: Nanosci. Nanotechnol. 5(3), 033001 (2014)
18.
Zurück zum Zitat Thorgilsson, G., Viktorsson, G., Erlingsson, S.I.: Recursive Green’s function method for multi-terminal nanostructures. J. Comput. Phys. 261, 256–266 (2014)MathSciNetMATH Thorgilsson, G., Viktorsson, G., Erlingsson, S.I.: Recursive Green’s function method for multi-terminal nanostructures. J. Comput. Phys. 261, 256–266 (2014)MathSciNetMATH
19.
Zurück zum Zitat Zhang, X.W., Liu, Y.L.: Electronic transport and spatial current patterns of 2d electronic system: a recursive green’s function method study. AIP Adv. 9(11), 115209 (2019) Zhang, X.W., Liu, Y.L.: Electronic transport and spatial current patterns of 2d electronic system: a recursive green’s function method study. AIP Adv. 9(11), 115209 (2019)
20.
Zurück zum Zitat Luisier, M., Schenk, A., Fichtner, W., Klimeck, G.: Atomistic simulation of nanowires in the \(s{p}^{3}{d}^{5}{s}^{*}\) tight-binding formalism: from boundary conditions to strain calculations. Phys. Rev. B 74, 205323 (2006) Luisier, M., Schenk, A., Fichtner, W., Klimeck, G.: Atomistic simulation of nanowires in the \(s{p}^{3}{d}^{5}{s}^{*}\) tight-binding formalism: from boundary conditions to strain calculations. Phys. Rev. B 74, 205323 (2006)
21.
Zurück zum Zitat Bescond, M., Cavassilas, N., Lannoo, M.: Effective-mass approach for n-type semiconductor nanowire MOSFETs arbitrarily oriented. Nanotechnology 18(25), 255201 (2007) Bescond, M., Cavassilas, N., Lannoo, M.: Effective-mass approach for n-type semiconductor nanowire MOSFETs arbitrarily oriented. Nanotechnology 18(25), 255201 (2007)
22.
Zurück zum Zitat Luisier, M., Klimeck, G.: Atomistic full-band simulations of silicon nanowire transistors: effects of electron-phonon scattering. Phys. Rev. B 80, 155430 (2009) Luisier, M., Klimeck, G.: Atomistic full-band simulations of silicon nanowire transistors: effects of electron-phonon scattering. Phys. Rev. B 80, 155430 (2009)
23.
Zurück zum Zitat Luisier, M., Klimeck, G.: Simulation of nanowire tunneling transistors: from the Wentzel–Kramers–Brillouin approximation to full-band phonon-assisted tunneling. J. Appl. Phys. 107(8), 084507 (2010) Luisier, M., Klimeck, G.: Simulation of nanowire tunneling transistors: from the Wentzel–Kramers–Brillouin approximation to full-band phonon-assisted tunneling. J. Appl. Phys. 107(8), 084507 (2010)
24.
Zurück zum Zitat Fiori, G., Iannaccone, G.: Multiscale modeling for graphene-based nanoscale transistors. Proc. IEEE 101(7), 1653–1669 (2013) Fiori, G., Iannaccone, G.: Multiscale modeling for graphene-based nanoscale transistors. Proc. IEEE 101(7), 1653–1669 (2013)
25.
Zurück zum Zitat Alarcon, A., Nguyen, V.-H., Berrada, S., Querlioz, D., Saint-Martin, J., Bournel, A., Dollfus, P.: Pseudosaturation and negative differential conductance in graphene field-effect transistors. IEEE Trans. Electron Devices 60, 985–991 (2013) Alarcon, A., Nguyen, V.-H., Berrada, S., Querlioz, D., Saint-Martin, J., Bournel, A., Dollfus, P.: Pseudosaturation and negative differential conductance in graphene field-effect transistors. IEEE Trans. Electron Devices 60, 985–991 (2013)
26.
Zurück zum Zitat Nguyen, V.H., Triozon, F., Bonnet, F.D.R., Niquet, Y.M.: Performances of strained nanowire devices: ballistic versus scattering-limited currents. IEEE Trans. Electron Devices 60, 1506–1513 (2013) Nguyen, V.H., Triozon, F., Bonnet, F.D.R., Niquet, Y.M.: Performances of strained nanowire devices: ballistic versus scattering-limited currents. IEEE Trans. Electron Devices 60, 1506–1513 (2013)
27.
Zurück zum Zitat Cavassilas, N., Michelini, F., Bescond, M.: Theoretical comparison of multiple quantum wells and thick-layer designs in InGaN/GaN solar cells. Appl. Phys. Lett. 105(6), 063903 (2014) Cavassilas, N., Michelini, F., Bescond, M.: Theoretical comparison of multiple quantum wells and thick-layer designs in InGaN/GaN solar cells. Appl. Phys. Lett. 105(6), 063903 (2014)
28.
Zurück zum Zitat Nguyen, V.-H., Niquet, Y.-M., Triozon, F., Duchemin, I., Nier, O., Rideau, D.: Quantum modeling of the carrier mobility in FDSOI devices. IEEE Trans. Electron Devices 61(9), 3096–3102 (2014) Nguyen, V.-H., Niquet, Y.-M., Triozon, F., Duchemin, I., Nier, O., Rideau, D.: Quantum modeling of the carrier mobility in FDSOI devices. IEEE Trans. Electron Devices 61(9), 3096–3102 (2014)
29.
Zurück zum Zitat Cavassilas, N., Claveau, Y., Bescond, M., Michelini, F.: Quantum electronic transport in polarization-engineered GaN/InGaN/GaN tunnel junctions. Appl. Phys. Lett. 110(16), 161106 (2017) Cavassilas, N., Claveau, Y., Bescond, M., Michelini, F.: Quantum electronic transport in polarization-engineered GaN/InGaN/GaN tunnel junctions. Appl. Phys. Lett. 110(16), 161106 (2017)
30.
Zurück zum Zitat Zhang, H., Guan, N., Piazza, V., Kapoor, A., Bougerol, C., Julien, F.H., Babichev, A.V., Cavassilas, N., Bescond, M., Michelini, F., Foldyna, M., Gautier, E., Durand, C., Eymery, J., Tchernycheva, M.: Comprehensive analyses of core-shell InGaN/GaN single nanowire photodiodes. J. Phys. D Appl. Phys. 50(48), 484001 (2017) Zhang, H., Guan, N., Piazza, V., Kapoor, A., Bougerol, C., Julien, F.H., Babichev, A.V., Cavassilas, N., Bescond, M., Michelini, F., Foldyna, M., Gautier, E., Durand, C., Eymery, J., Tchernycheva, M.: Comprehensive analyses of core-shell InGaN/GaN single nanowire photodiodes. J. Phys. D Appl. Phys. 50(48), 484001 (2017)
31.
Zurück zum Zitat Choukroun, J., Pala, M., Fang, S., Kaxiras, E., Dollfus, P.: High performance tunnel field effect transistors based on in-plane transition metal dichalcogenide heterojunctions. Nanotechnology 30, 025201 (2018) Choukroun, J., Pala, M., Fang, S., Kaxiras, E., Dollfus, P.: High performance tunnel field effect transistors based on in-plane transition metal dichalcogenide heterojunctions. Nanotechnology 30, 025201 (2018)
32.
Zurück zum Zitat Bescond, M., Autran, J.L., Munteanu, D., Lannoo, M.: Atomic-scale modeling of double-gate MOSFETs using a tight-binding Green’s function formalism. Solid-State Electron 48(4), 567–574 (2004) Bescond, M., Autran, J.L., Munteanu, D., Lannoo, M.: Atomic-scale modeling of double-gate MOSFETs using a tight-binding Green’s function formalism. Solid-State Electron 48(4), 567–574 (2004)
33.
Zurück zum Zitat Martinez, A., Bescond, M., Barker, J.R., Svizhenko, A., Anantram, M.P., Millar, C., Asenov, A.: A self-consistent full 3-d real-space NEGF simulator for studying nonperturbative effects in nano-MOSFETs. IEEE Trans. Electron Devices 54, 2213–2222 (2007) Martinez, A., Bescond, M., Barker, J.R., Svizhenko, A., Anantram, M.P., Millar, C., Asenov, A.: A self-consistent full 3-d real-space NEGF simulator for studying nonperturbative effects in nano-MOSFETs. IEEE Trans. Electron Devices 54, 2213–2222 (2007)
34.
Zurück zum Zitat Groth, C.W., Wimmer, M., Akhmerov, A.R., Waintal, X.: Kwant: a software package for quantum transport. New J. Phys. 16(6), 063065 (2014) Groth, C.W., Wimmer, M., Akhmerov, A.R., Waintal, X.: Kwant: a software package for quantum transport. New J. Phys. 16(6), 063065 (2014)
35.
Zurück zum Zitat Hung, N.V., Charlier, J.-C.: Klein tunneling and electron optics in Dirac-Weyl fermion systems with tilted energy dispersion. Phys. Rev. B 97, 235113 (2018) Hung, N.V., Charlier, J.-C.: Klein tunneling and electron optics in Dirac-Weyl fermion systems with tilted energy dispersion. Phys. Rev. B 97, 235113 (2018)
36.
Zurück zum Zitat Brun, B., Moreau, N., Somanchi, S., Nguyen, V.-H., Watanabe, K., Taniguchi, T., Charlier, J.-C., Stampfer, C., Hackens, B.: Imaging Dirac fermions flow through a circular Veselago lens. Phys. Rev. B 100, 041401 (2019) Brun, B., Moreau, N., Somanchi, S., Nguyen, V.-H., Watanabe, K., Taniguchi, T., Charlier, J.-C., Stampfer, C., Hackens, B.: Imaging Dirac fermions flow through a circular Veselago lens. Phys. Rev. B 100, 041401 (2019)
37.
Zurück zum Zitat Hung, N.V., Charlier, J.-C.: Aharonov-Bohm interferences in polycrystalline graphene. Nanoscale Adv. 2, 256–263 (2020) Hung, N.V., Charlier, J.-C.: Aharonov-Bohm interferences in polycrystalline graphene. Nanoscale Adv. 2, 256–263 (2020)
38.
Zurück zum Zitat Ozaki, T., Nishio, K., Kino, H.: Efficient implementation of the nonequilibrium Green’s function method for electronic transport calculations. Phys. Rev. B 81, 035116 (2010) Ozaki, T., Nishio, K., Kino, H.: Efficient implementation of the nonequilibrium Green’s function method for electronic transport calculations. Phys. Rev. B 81, 035116 (2010)
39.
Zurück zum Zitat Papior, N., Lorente, N., Frederiksen, T., García, A., Brandbyge, M.: Improvements on non-equilibrium and transport Green’s function techniques: the next-generation transiesta. Comp. Phys. Comm. 212, 8–24 (2017)MATH Papior, N., Lorente, N., Frederiksen, T., García, A., Brandbyge, M.: Improvements on non-equilibrium and transport Green’s function techniques: the next-generation transiesta. Comp. Phys. Comm. 212, 8–24 (2017)MATH
40.
Zurück zum Zitat Zhang, W., Fisher, T.S., Mingo, N.: The atomistic green’s function method: an efficient simulation approach for nanoscale phonon transport. Numer. Heat Transfer Part B Fund. 51(4), 333–349 (2007) Zhang, W., Fisher, T.S., Mingo, N.: The atomistic green’s function method: an efficient simulation approach for nanoscale phonon transport. Numer. Heat Transfer Part B Fund. 51(4), 333–349 (2007)
41.
Zurück zum Zitat Lan, J., Wang, J.-S., Gan, C.K., Chin, S.K.: Edge effects on quantum thermal transport in graphene nanoribbons: tight-binding calculations. Phys. Rev. B 79, 115401 (2009) Lan, J., Wang, J.-S., Gan, C.K., Chin, S.K.: Edge effects on quantum thermal transport in graphene nanoribbons: tight-binding calculations. Phys. Rev. B 79, 115401 (2009)
42.
Zurück zum Zitat Mazzamuto, F., Hung, N.V., Apertet, Y., Caër, C., Chassat, C., Saint-Martin, J., Dollfus, P.: Enhanced thermoelectric properties in graphene nanoribbons by resonant tunneling of electrons. Phys. Rev. B 83, 235426 (2011) Mazzamuto, F., Hung, N.V., Apertet, Y., Caër, C., Chassat, C., Saint-Martin, J., Dollfus, P.: Enhanced thermoelectric properties in graphene nanoribbons by resonant tunneling of electrons. Phys. Rev. B 83, 235426 (2011)
43.
Zurück zum Zitat Mazzamuto, F., Saint-Martin, J., Nguyen, V.H., Chassat, C., Dollfus, P.: Thermoelectric performance of disordered and nanostructured graphene ribbons using Green’s function method. J. Comput. Electron. 11, 67–77 (2012) Mazzamuto, F., Saint-Martin, J., Nguyen, V.H., Chassat, C., Dollfus, P.: Thermoelectric performance of disordered and nanostructured graphene ribbons using Green’s function method. J. Comput. Electron. 11, 67–77 (2012)
44.
Zurück zum Zitat Hung, N.V., Chung, N.M., Nguyen, H.-V., Saint-Martin, J., Dollfus, P.: Enhanced thermoelectric figure of merit in vertical graphene junctions. Appl. Phys. Lett. 105(13), 133105 (2014) Hung, N.V., Chung, N.M., Nguyen, H.-V., Saint-Martin, J., Dollfus, P.: Enhanced thermoelectric figure of merit in vertical graphene junctions. Appl. Phys. Lett. 105(13), 133105 (2014)
45.
Zurück zum Zitat Wang, J.-S., Agarwalla, B.K., Li, H., Thingna, J.: Nonequilibrium Green’s function method for quantum thermal transport. Front. Phys. 9, 673–679 (2014) Wang, J.-S., Agarwalla, B.K., Li, H., Thingna, J.: Nonequilibrium Green’s function method for quantum thermal transport. Front. Phys. 9, 673–679 (2014)
46.
Zurück zum Zitat Drouvelis, P.S., Schmelcher, P., Bastian, P.: Parallel implementation of the recursive Green’s function method. J. Comput. Phys. 215(2), 741–756 (2006)MathSciNetMATH Drouvelis, P.S., Schmelcher, P., Bastian, P.: Parallel implementation of the recursive Green’s function method. J. Comput. Phys. 215(2), 741–756 (2006)MathSciNetMATH
47.
Zurück zum Zitat Avouris, P., Heinz, T.F., Low, T.: 2D Materials: Properties and Devices. Cambridge University Press, Cambridge (2017) Avouris, P., Heinz, T.F., Low, T.: 2D Materials: Properties and Devices. Cambridge University Press, Cambridge (2017)
48.
Zurück zum Zitat Ferrari, A.C., et al.: Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 7, 4598–4810 (2015) Ferrari, A.C., et al.: Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 7, 4598–4810 (2015)
49.
Zurück zum Zitat Geim, A.K., Grigorieva, I.V.: Van der Waals heterostructures. Nature 499, 419–425 (2013) Geim, A.K., Grigorieva, I.V.: Van der Waals heterostructures. Nature 499, 419–425 (2013)
50.
Zurück zum Zitat Novoselov, K.S., Mishchenko, A., Carvalho, A., Castro Neto, A.H.: 2d materials and van der Waals heterostructures. Science 353(6298), aac9439 (2016) Novoselov, K.S., Mishchenko, A., Carvalho, A., Castro Neto, A.H.: 2d materials and van der Waals heterostructures. Science 353(6298), aac9439 (2016)
51.
Zurück zum Zitat He, F., Zhou, Y., Ye, Z., Cho, S.-H., Jeong, J., Meng, X., Wang, Y.: Moiré patterns in 2d materials: a review. ACS Nano 15, 5944–5958 (2021) He, F., Zhou, Y., Ye, Z., Cho, S.-H., Jeong, J., Meng, X., Wang, Y.: Moiré patterns in 2d materials: a review. ACS Nano 15, 5944–5958 (2021)
52.
Zurück zum Zitat Wang, J., Mu, X., Wang, L., Sun, M.: Properties and applications of new superlattice: twisted bilayer graphene. Mater. Today Phys. 9, 100099 (2019) Wang, J., Mu, X., Wang, L., Sun, M.: Properties and applications of new superlattice: twisted bilayer graphene. Mater. Today Phys. 9, 100099 (2019)
53.
Zurück zum Zitat Andrei, E.Y., MacDonald, A.H.: Graphene bilayers with a twist. Nat. Mater. 19, 1265–1275 (2020) Andrei, E.Y., MacDonald, A.H.: Graphene bilayers with a twist. Nat. Mater. 19, 1265–1275 (2020)
54.
Zurück zum Zitat Yoo, H., Engelke, R., Carr, S., Fang, S., Zhang, K., Cazeaux, P., Sung, S.H., Hovden, R., Tsen, A.W., Taniguchi, T., Watanabe, K., Yi, G.-C., Kim, M., Luskin, M., Tadmor, E.B., Kaxiras, E., Kim, P.: Atomic and electronic reconstruction at the van der Waals interface in twisted bilayer graphene. Nat. Mater. 18, 448–453 (2019) Yoo, H., Engelke, R., Carr, S., Fang, S., Zhang, K., Cazeaux, P., Sung, S.H., Hovden, R., Tsen, A.W., Taniguchi, T., Watanabe, K., Yi, G.-C., Kim, M., Luskin, M., Tadmor, E.B., Kaxiras, E., Kim, P.: Atomic and electronic reconstruction at the van der Waals interface in twisted bilayer graphene. Nat. Mater. 18, 448–453 (2019)
55.
Zurück zum Zitat Sunku, S.S., Ni, G.X., Jiang, B.Y., Yoo, H., Sternbach, A., McLeod, A.S., Stauber, T., Xiong, L., Taniguchi, T., Watanabe, K., Kim, P., Fogler, M.M., Basov, D.N.: Photonic crystals for nano-light in moiré graphene superlattices. Science 362, 1153–1156 (2018)MathSciNet Sunku, S.S., Ni, G.X., Jiang, B.Y., Yoo, H., Sternbach, A., McLeod, A.S., Stauber, T., Xiong, L., Taniguchi, T., Watanabe, K., Kim, P., Fogler, M.M., Basov, D.N.: Photonic crystals for nano-light in moiré graphene superlattices. Science 362, 1153–1156 (2018)MathSciNet
56.
Zurück zum Zitat Zhao, P., Zhang, Q., Jena, D., Koswatta, S.O.: Influence of metal-graphene contact on the operation and scalability of graphene field-effect transistors. IEEE Trans. Electron Devices 58(9), 3170–3178 (2011) Zhao, P., Zhang, Q., Jena, D., Koswatta, S.O.: Influence of metal-graphene contact on the operation and scalability of graphene field-effect transistors. IEEE Trans. Electron Devices 58(9), 3170–3178 (2011)
57.
Zurück zum Zitat Barraza-Lopez, S., Kindermann, M., Chou, M.Y.: Charge transport through graphene junctions with wetting metal leads. Nano Lett. 12(7), 3424–3430 (2012) Barraza-Lopez, S., Kindermann, M., Chou, M.Y.: Charge transport through graphene junctions with wetting metal leads. Nano Lett. 12(7), 3424–3430 (2012)
58.
Zurück zum Zitat Do Nam, V., Le Anh, H.: Transport characteristics of graphene-metal interfaces. Appl. Phys. Lett. 101(16), 161605 (2012) Do Nam, V., Le Anh, H.: Transport characteristics of graphene-metal interfaces. Appl. Phys. Lett. 101(16), 161605 (2012)
59.
Zurück zum Zitat Houssa, M., Iordanidou, K., Dabral, A., Augustin, L., Pourtois, G., Afanasiev, V., Stesmans, A.: Contact resistance at MoS\(_2\)-based 2d metal/semiconductor lateral heterojunctions. ACS Appl. Nano Mater. 2(2), 760–766 (2019) Houssa, M., Iordanidou, K., Dabral, A., Augustin, L., Pourtois, G., Afanasiev, V., Stesmans, A.: Contact resistance at MoS\(_2\)-based 2d metal/semiconductor lateral heterojunctions. ACS Appl. Nano Mater. 2(2), 760–766 (2019)
60.
Zurück zum Zitat Sancho, M.P.L., Sancho, J.M.L., Rubio, J.: Quick iterative scheme for the calculation of transfer matrices: application to Mo (100). J. Phys. F: Met. Phys. 14(5), 1205 (1984) Sancho, M.P.L., Sancho, J.M.L., Rubio, J.: Quick iterative scheme for the calculation of transfer matrices: application to Mo (100). J. Phys. F: Met. Phys. 14(5), 1205 (1984)
61.
Zurück zum Zitat MacKinnon, A.: The calculation of transport properties and density of states of disordered solids. Z. Phys. B 59, 385–390 (1985) MacKinnon, A.: The calculation of transport properties and density of states of disordered solids. Z. Phys. B 59, 385–390 (1985)
62.
Zurück zum Zitat Umerski, A.: Closed-form solutions to surface Green’s functions. Phys. Rev. B 55, 5266–5275 (1997) Umerski, A.: Closed-form solutions to surface Green’s functions. Phys. Rev. B 55, 5266–5275 (1997)
63.
Zurück zum Zitat Rivas, C., Lake, R.: Non-equilibrium green function implementation of boundary conditions for full band simulations of substrate-nanowire structures. Phys. Status Solidi (B) 239, 94–102 (2003) Rivas, C., Lake, R.: Non-equilibrium green function implementation of boundary conditions for full band simulations of substrate-nanowire structures. Phys. Status Solidi (B) 239, 94–102 (2003)
64.
Zurück zum Zitat Rocha, A.R., García-Suárez, V.M., Bailey, S., Lambert, C., Ferrer, J., Sanvito, S.: Spin and molecular electronics in atomically generated orbital landscapes. Phys. Rev. B 73, 085414 (2006) Rocha, A.R., García-Suárez, V.M., Bailey, S., Lambert, C., Ferrer, J., Sanvito, S.: Spin and molecular electronics in atomically generated orbital landscapes. Phys. Rev. B 73, 085414 (2006)
65.
Zurück zum Zitat Brück, S., Calderara, M., Bani-Hashemian, M.H., VandeVondele, J., Luisier, M.: Efficient algorithms for large-scale quantum transport calculations. J. Chem. Phys. 147, 074116 (2017) Brück, S., Calderara, M., Bani-Hashemian, M.H., VandeVondele, J., Luisier, M.: Efficient algorithms for large-scale quantum transport calculations. J. Chem. Phys. 147, 074116 (2017)
66.
Zurück zum Zitat Hung, N.V., Paszko, D., Lamparski, M., Van Troeye, B., Meunier, V., Charlier, J.C.: Electronic localization in small-angle twisted bilayer graphene. 2D Mater. 8(3), 035046 (2021) Hung, N.V., Paszko, D., Lamparski, M., Van Troeye, B., Meunier, V., Charlier, J.C.: Electronic localization in small-angle twisted bilayer graphene. 2D Mater. 8(3), 035046 (2021)
67.
Zurück zum Zitat Gadelha, A.C., et al.: Localization of lattice dynamics in low-angle twisted bilayer graphene. Nature 590, 405–409 (2021) Gadelha, A.C., et al.: Localization of lattice dynamics in low-angle twisted bilayer graphene. Nature 590, 405–409 (2021)
68.
Zurück zum Zitat Hung, N.V., Hoang, T.X., Charlier, J.C.: Electronic properties of twisted multilayer graphene. J. Phys. Mater. 5(3), 034003 (2022) Hung, N.V., Hoang, T.X., Charlier, J.C.: Electronic properties of twisted multilayer graphene. J. Phys. Mater. 5(3), 034003 (2022)
69.
Zurück zum Zitat de Trambly Laissardiére, G., Mayou, D., Magaud, L.: Localization of Dirac electrons in rotated graphene bilayers. Nano Lett. 10(3), 804–808 (2010) de Trambly Laissardiére, G., Mayou, D., Magaud, L.: Localization of Dirac electrons in rotated graphene bilayers. Nano Lett. 10(3), 804–808 (2010)
70.
Zurück zum Zitat Hung, N.V., Dollfus, P.: Strain-induced modulation of Dirac cones and van hove singularities in a twisted graphene bilayer. 2D Mater. 2, 035005 (2015) Hung, N.V., Dollfus, P.: Strain-induced modulation of Dirac cones and van hove singularities in a twisted graphene bilayer. 2D Mater. 2, 035005 (2015)
71.
Zurück zum Zitat Bistritzer, R., MacDonald, A.H.: Moiré bands in twisted double-layer graphene. Proc. Natl. Acad. Sci. 108(30), 12233–12237 (2011) Bistritzer, R., MacDonald, A.H.: Moiré bands in twisted double-layer graphene. Proc. Natl. Acad. Sci. 108(30), 12233–12237 (2011)
72.
Zurück zum Zitat Cao, Y., Fatemi, V., Fang, S., Watanabe, K., Taniguchi, T., Axiras, E., Jarillo-Herrero, P.: Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018) Cao, Y., Fatemi, V., Fang, S., Watanabe, K., Taniguchi, T., Axiras, E., Jarillo-Herrero, P.: Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018)
73.
Zurück zum Zitat Brun, B., Moreau, N., Somanchi, S., Nguyen, V.-H., MreńcandKolasińska, A., Watanabe, K., Taniguchi, T., Charlier, J.-C., Stampfer, C., Hackens, B.: Optimizing Dirac fermions quasi-confinement by potential smoothness engineering. 2D Mater. 7(2), 025037 (2020) Brun, B., Moreau, N., Somanchi, S., Nguyen, V.-H., MreńcandKolasińska, A., Watanabe, K., Taniguchi, T., Charlier, J.-C., Stampfer, C., Hackens, B.: Optimizing Dirac fermions quasi-confinement by potential smoothness engineering. 2D Mater. 7(2), 025037 (2020)
74.
Zurück zum Zitat Young, A.F., Kim, P.: Quantum interference and Klein Tunnelling in graphene heterojunctions. Nat. Phys. 5, 222–226 (2009) Young, A.F., Kim, P.: Quantum interference and Klein Tunnelling in graphene heterojunctions. Nat. Phys. 5, 222–226 (2009)
75.
Zurück zum Zitat Rickhaus, P., Maurand, R., Liu, M.-H., Weiss, M., Richter, K., Schönenberger, C.: Ballistic interferences in suspended graphene. Nat. Commun. 4, 2342 (2013) Rickhaus, P., Maurand, R., Liu, M.-H., Weiss, M., Richter, K., Schönenberger, C.: Ballistic interferences in suspended graphene. Nat. Commun. 4, 2342 (2013)
76.
Zurück zum Zitat Datta, S.: Nanoscale device modeling: the Green’s function method. Superlattices Microstruct. 28(4), 253–278 (2000) Datta, S.: Nanoscale device modeling: the Green’s function method. Superlattices Microstruct. 28(4), 253–278 (2000)
77.
Zurück zum Zitat TB-SIM code: \(www.mem-lab.fr/en/Pages/L_{-}SIM/Softwares/TB_{-}Sim.aspx\) TB-SIM code: \(www.mem-lab.fr/en/Pages/L_{-}SIM/Softwares/TB_{-}Sim.aspx\)
78.
Zurück zum Zitat NanoTCAD ViDES: \(http://vides.nanotcad.com\) NanoTCAD ViDES: \(http://vides.nanotcad.com\)
79.
Zurück zum Zitat Nemec, N., Cuniberti, G.: Hofstadter butterflies of bilayer graphene. Phys. Rev. B 75, 201404 (2007) Nemec, N., Cuniberti, G.: Hofstadter butterflies of bilayer graphene. Phys. Rev. B 75, 201404 (2007)
80.
Zurück zum Zitat Hasegawa, Y., Kohmoto, M.: Periodic landau gauge and quantum hall effect in twisted bilayer graphene. Phys. Rev. B 88, 125426 (2013) Hasegawa, Y., Kohmoto, M.: Periodic landau gauge and quantum hall effect in twisted bilayer graphene. Phys. Rev. B 88, 125426 (2013)
81.
Zurück zum Zitat Moon, P., Koshino, M.: Energy spectrum and quantum hall effect in twisted bilayer graphene. Phys. Rev. B 85, 195458 (2012) Moon, P., Koshino, M.: Energy spectrum and quantum hall effect in twisted bilayer graphene. Phys. Rev. B 85, 195458 (2012)
82.
Zurück zum Zitat Crosse, J.A., Nakatsuji, N., Koshino, M., Moon, P.: Hofstadter butterfly and the quantum hall effect in twisted double bilayer graphene. Phys. Rev. B 102, 035421 (2020) Crosse, J.A., Nakatsuji, N., Koshino, M., Moon, P.: Hofstadter butterfly and the quantum hall effect in twisted double bilayer graphene. Phys. Rev. B 102, 035421 (2020)
83.
Zurück zum Zitat QuanSheng, W., Liu, J., Guan, Y., Yazyev, O.V.: Landau levels as a probe for band topology in graphene moiré superlattices. Phys. Rev. Lett. 126, 056401 (2021) QuanSheng, W., Liu, J., Guan, Y., Yazyev, O.V.: Landau levels as a probe for band topology in graphene moiré superlattices. Phys. Rev. Lett. 126, 056401 (2021)
84.
Zurück zum Zitat Yin, L.-J., Bai, K.-K., Wang, W.-X., Li, S.-Y., Yu, Z., Lin, H.: Landau quantization of Dirac fermions in graphene and its multilayers. Front. Phys. 12, 127208 (2017) Yin, L.-J., Bai, K.-K., Wang, W.-X., Li, S.-Y., Yu, Z., Lin, H.: Landau quantization of Dirac fermions in graphene and its multilayers. Front. Phys. 12, 127208 (2017)
85.
Zurück zum Zitat Hejazi, K., Liu, C., Balents, L.: Landau levels in twisted bilayer graphene and semiclassical orbits. Phys. Rev. B 100, 035115 (2019) Hejazi, K., Liu, C., Balents, L.: Landau levels in twisted bilayer graphene and semiclassical orbits. Phys. Rev. B 100, 035115 (2019)
Metadaten
Titel
Recursive Green’s functions optimized for atomistic modelling of large superlattice-based devices
verfasst von
V. Hung Nguyen
J. -C. Charlier
Publikationsdatum
19.06.2023
Verlag
Springer US
Erschienen in
Journal of Computational Electronics / Ausgabe 5/2023
Print ISSN: 1569-8025
Elektronische ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-023-02052-6