Skip to main content

2021 | OriginalPaper | Buchkapitel

Recycle Strategies to Deal with Metal Nanomaterials by Using Aquatic Plants Through Phytoremediation Technique

verfasst von : Jyoti Mehta, Moharana Choudhury, Arghya Chakravorty, Rehab A. Rayan, Neeta Laxman Lala, Andrews Grace Nirmala

Erschienen in: Waste Recycling Technologies for Nanomaterials Manufacturing

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

An expanding need for nanotechnology in different enterprises may cause a vast situation scattering of nanoparticles in the coming years. The most widely recognized recuperation technique utilized so far includes using magnets to isolate iron-containing nanoparticles from complex blends, including wastewater. A few strategies have additionally been produced for the extraction, partition, and re-utilization of costly gold nanoparticles from various fluids. Pollution of multiple contaminants similar to metal nanoparticles (MNPs), Cu, Ni, Zn, Cd Ag, Pb, etc. exists well known to cause toxicity on the aquatic ecosystem. Macrophytes like Trapa spp., Lemna spp., Eichhornia spp., Vallisneria spp., and Pistia spp., etc., will be used to remove the MNPs from the contaminated water in an eco-friendly and cost-effective way. Phytoremediation has been effectively actualized in various areas, including military destinations, agrarian fields, present-day units, mine dumps, sludge, and common wastewater treatment plants, by productive limit concerning expelling different natural and inorganic toxins through procedures, for example, extraction, debasement, or adjustment. Aquatic macrophytes speak to a diverse gathering of plants with a significant probability of expulsion/corruption into an assortment of pollutants, together with overwhelming metals, inorganic/natural poisons, radiogenic wastes, and explosives. The current examination highlights aquatic plants’ work through phytoremediation progressions utilizing reasonable gathering regardless of presence free-swimming, underwater, or developing. Understanding the top capacities of sea-going macrophytes their relevance for more extensive utilization in phytoremediation innovations with developed swamps is underlined.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
3.
Zurück zum Zitat Saharan V (2011) Advances in nanobiotechnology for agriculture. In: Current topics in biotechnology & microbiology. Lap Lambert Academic Publishing AG & CO. KG, Dudweller Landstr, Germany, pp 156 Saharan V (2011) Advances in nanobiotechnology for agriculture. In: Current topics in biotechnology & microbiology. Lap Lambert Academic Publishing AG & CO. KG, Dudweller Landstr, Germany, pp 156
4.
Zurück zum Zitat Handy RD, Shaw BJ (2007) Toxic effects of nanoparticles and nanomaterials: implications for public health, risk assessment and the public perception of nanotechnology. Health Risk Soc 9(2):125–144CrossRef Handy RD, Shaw BJ (2007) Toxic effects of nanoparticles and nanomaterials: implications for public health, risk assessment and the public perception of nanotechnology. Health Risk Soc 9(2):125–144CrossRef
5.
Zurück zum Zitat Owen R, Handy RD (2007) Formulating the problems for environmental risk assessment of nanomaterials. Environ Sci Technol 41:582–588 Owen R, Handy RD (2007) Formulating the problems for environmental risk assessment of nanomaterials. Environ Sci Technol 41:582–588
6.
Zurück zum Zitat Murithi G, Onindo CO, Muthakia GK (2012) Kinetic and equilibrium study for the sorption of Pb(II) ions from aqueous phase by water hyacinth (Eichhornia crassipes). Bull Chem Soc Ethiopia 26(2):181–193CrossRef Murithi G, Onindo CO, Muthakia GK (2012) Kinetic and equilibrium study for the sorption of Pb(II) ions from aqueous phase by water hyacinth (Eichhornia crassipes). Bull Chem Soc Ethiopia 26(2):181–193CrossRef
7.
Zurück zum Zitat Parra LM, Torres G, Arenas AD, Sánchez E, Rodríguez K (2012) Phytoremediation of low levels of heavy metals using duckweed (Lemna minor). Abiotic stress responses in plants: metabolism, productivity and sustainability. Springer, New York, pp 451–463CrossRef Parra LM, Torres G, Arenas AD, Sánchez E, Rodríguez K (2012) Phytoremediation of low levels of heavy metals using duckweed (Lemna minor). Abiotic stress responses in plants: metabolism, productivity and sustainability. Springer, New York, pp 451–463CrossRef
8.
Zurück zum Zitat Alvarado S, Guédez M, Lué-Merú MP, Nelson G, Alvaro A, Jesús AC et al (2008) Arsenic removal from waters by bioremediation with the aquatic plants water hyacinth (Eichhornia crassipes) and lesser duckweed (Lemna minor). Bioresour Technol 99:8436–8440CrossRef Alvarado S, Guédez M, Lué-Merú MP, Nelson G, Alvaro A, Jesús AC et al (2008) Arsenic removal from waters by bioremediation with the aquatic plants water hyacinth (Eichhornia crassipes) and lesser duckweed (Lemna minor). Bioresour Technol 99:8436–8440CrossRef
9.
Zurück zum Zitat Prasad M, Malec P, Waloszek V (2001) Physiological responses of Lemna trisulca L. (duckweed) to cadmium and copper bioaccumulation. Plant Sci 161:881–889CrossRef Prasad M, Malec P, Waloszek V (2001) Physiological responses of Lemna trisulca L. (duckweed) to cadmium and copper bioaccumulation. Plant Sci 161:881–889CrossRef
10.
Zurück zum Zitat Taghiganji M, Khosravi M, Rakhshaee R (2012) Phytoremediation potential of aquatic macrophyte Azolla. Ambio 41:122–137CrossRef Taghiganji M, Khosravi M, Rakhshaee R (2012) Phytoremediation potential of aquatic macrophyte Azolla. Ambio 41:122–137CrossRef
11.
Zurück zum Zitat Bennicelli R, Stezpniewska Z, Banach A, Szajnocha K, Ostrowski J (2004) The ability of Azolla caroliniana to remove heavy metals (Hg(II), Cr(III), Cr(VI)) from municipal waste water. Chemosphere 55:141–146CrossRef Bennicelli R, Stezpniewska Z, Banach A, Szajnocha K, Ostrowski J (2004) The ability of Azolla caroliniana to remove heavy metals (Hg(II), Cr(III), Cr(VI)) from municipal waste water. Chemosphere 55:141–146CrossRef
12.
Zurück zum Zitat Smadar E, Benny C, Tel-Or E, Lorena V, Antonio C, Aharon G (2011) Removal of silver and lead ions from water wastes using Azolla filiculoides, an aquatic plant, which adsorbs and reduces the ions into the corresponding metallic nanoparticles under microwave radiation in 5 min. Water Air Soil Pollut 218:365–370CrossRef Smadar E, Benny C, Tel-Or E, Lorena V, Antonio C, Aharon G (2011) Removal of silver and lead ions from water wastes using Azolla filiculoides, an aquatic plant, which adsorbs and reduces the ions into the corresponding metallic nanoparticles under microwave radiation in 5 min. Water Air Soil Pollut 218:365–370CrossRef
13.
Zurück zum Zitat Leblebici Z, Aksoy A (2011) Growth and lead accumulation capacity of Lemna minor and Spirodela polyrhiza (Lemnaceae): interactions with nutrient enrichment. Water Air Soil Pollut 214:175–184CrossRef Leblebici Z, Aksoy A (2011) Growth and lead accumulation capacity of Lemna minor and Spirodela polyrhiza (Lemnaceae): interactions with nutrient enrichment. Water Air Soil Pollut 214:175–184CrossRef
14.
Zurück zum Zitat Rahman MA, Hasegawa H (2011) Aquatic arsenic: phytoremediation using floating macrophytes. Chemosphere 83:633–646CrossRef Rahman MA, Hasegawa H (2011) Aquatic arsenic: phytoremediation using floating macrophytes. Chemosphere 83:633–646CrossRef
15.
Zurück zum Zitat Sasmaza A, Obek E (2012) The accumulation of silver and gold in Lemna gibba exposed to secondary effluents. Chem Erde-Geochem 72:149–152CrossRef Sasmaza A, Obek E (2012) The accumulation of silver and gold in Lemna gibba exposed to secondary effluents. Chem Erde-Geochem 72:149–152CrossRef
26.
Zurück zum Zitat Mukhopadhyay S, Maiti SK (2010) Phytoremediation of metal enriched mine waste: a review. Am-Eurasian J Agric Amp Environ Sci 9:560–575 Mukhopadhyay S, Maiti SK (2010) Phytoremediation of metal enriched mine waste: a review. Am-Eurasian J Agric Amp Environ Sci 9:560–575
29.
Zurück zum Zitat Mobasser S, Firoozi AA (2016) Review of nanotechnology applications in science and engineering. J Civil Eng Urban 6(4):84–93 Mobasser S, Firoozi AA (2016) Review of nanotechnology applications in science and engineering. J Civil Eng Urban 6(4):84–93
31.
Zurück zum Zitat Boverhof DR, Bramante CM, Butala JH, Clancy SF, Lafranconi M, West J, Gordon SC (2015) Comparative assessment of nanomaterial definitions and safety evaluation considerations. Regul Toxicol Pharmacol 73(1):137–150CrossRef Boverhof DR, Bramante CM, Butala JH, Clancy SF, Lafranconi M, West J, Gordon SC (2015) Comparative assessment of nanomaterial definitions and safety evaluation considerations. Regul Toxicol Pharmacol 73(1):137–150CrossRef
32.
Zurück zum Zitat Feynman R (1960) There’s plenty of room at the bottom. An invitation to enter a new field of science, lecture, annual meeting of the American Physical Society, California Institute of Technology, December 29, 1959. Caltech Eng Sci 23:22–36 Feynman R (1960) There’s plenty of room at the bottom. An invitation to enter a new field of science, lecture, annual meeting of the American Physical Society, California Institute of Technology, December 29, 1959. Caltech Eng Sci 23:22–36
35.
Zurück zum Zitat Chokkareddy R, Redhi GG (2018) Green synthesis of metal nanoparticles and its reaction mechanisms. Green Metal Nanoparticles, 113–139 Chokkareddy R, Redhi GG (2018) Green synthesis of metal nanoparticles and its reaction mechanisms. Green Metal Nanoparticles, 113–139
36.
Zurück zum Zitat Matyushkin LB, Ryzhov OA, Aleksandrova OA, Moshnikov VA (2016) Synthesis of metal and semiconductor nanoparticles in a flow of immiscible liquids. Semiconductors 50(6):844–847CrossRef Matyushkin LB, Ryzhov OA, Aleksandrova OA, Moshnikov VA (2016) Synthesis of metal and semiconductor nanoparticles in a flow of immiscible liquids. Semiconductors 50(6):844–847CrossRef
37.
Zurück zum Zitat Bennet D, Kim S (2014) Polymer nanoparticles for smart drug delivery. Application of nanotechnology in drug delivery, 257–310, Chapter 8 Bennet D, Kim S (2014) Polymer nanoparticles for smart drug delivery. Application of nanotechnology in drug delivery, 257–310, Chapter 8
38.
Zurück zum Zitat García-Pinel B, Porras-Alcalá C, Ortega-Rodríguez A, Sarabia F, Prados J, Melguizo C, López-Romero JM (2019) Lipid-based nanoparticles: application and recent advances in cancer treatment. Nanomaterials 9(4):638CrossRef García-Pinel B, Porras-Alcalá C, Ortega-Rodríguez A, Sarabia F, Prados J, Melguizo C, López-Romero JM (2019) Lipid-based nanoparticles: application and recent advances in cancer treatment. Nanomaterials 9(4):638CrossRef
39.
Zurück zum Zitat Prathna TC, Mathew L, Chandrasekaran N et al (2010) Biomimetic synthesis of nanoparticles: science, technology and applicability. In: Biomimetics learning from nature. InTech Prathna TC, Mathew L, Chandrasekaran N et al (2010) Biomimetic synthesis of nanoparticles: science, technology and applicability. In: Biomimetics learning from nature. InTech
41.
Zurück zum Zitat Li J, Wu Q, Wu J (2015) Synthesis of nanoparticles via solvothermal and hydrothermal methods. In: Handbook of nanoparticles. Springer, Berlin, pp 1–28 Li J, Wu Q, Wu J (2015) Synthesis of nanoparticles via solvothermal and hydrothermal methods. In: Handbook of nanoparticles. Springer, Berlin, pp 1–28
43.
Zurück zum Zitat Reza Sadrolhosseini A, Adzir Mahdi M, Alizadeh F, Abdul Rashid S (2019) Laser ablation technique for synthesis of metal nanoparticle in liquid. In: Laser technology and its applications. IntechOpen Reza Sadrolhosseini A, Adzir Mahdi M, Alizadeh F, Abdul Rashid S (2019) Laser ablation technique for synthesis of metal nanoparticle in liquid. In: Laser technology and its applications. IntechOpen
44.
Zurück zum Zitat Suryanarayana C, Prabhu B (2007) Synthesis of nanostructured materials by inert-gas condensation methods. In: Nanostructured materials. Elsevier, Netherlands, pp 47–90 Suryanarayana C, Prabhu B (2007) Synthesis of nanostructured materials by inert-gas condensation methods. In: Nanostructured materials. Elsevier, Netherlands, pp 47–90
51.
Zurück zum Zitat Hansen LP, Sargent TJ (1980) Formulating and estimating dynamic linear rational expectations models. J Econ Dyn Control 2:7–46CrossRef Hansen LP, Sargent TJ (1980) Formulating and estimating dynamic linear rational expectations models. J Econ Dyn Control 2:7–46CrossRef
52.
Zurück zum Zitat Carr KL (1997) US Patent 5,616,268. US Patent and Trademark Office, Washington, DC Carr KL (1997) US Patent 5,616,268. US Patent and Trademark Office, Washington, DC
53.
Zurück zum Zitat Haury J, Aïdara LG (1999). Macrophyte cover and standing crop in the River Scorff and its tributaries (Brittany, northwestern France): scale, patterns and process. In: Biology, ecology and management of aquatic plants. Springer, Dordrecht, pp 109–115 Haury J, Aïdara LG (1999). Macrophyte cover and standing crop in the River Scorff and its tributaries (Brittany, northwestern France): scale, patterns and process. In: Biology, ecology and management of aquatic plants. Springer, Dordrecht, pp 109–115
54.
Zurück zum Zitat Kennamer JD, Honnold J, Bradford J, Hendricks M (2000) Differences in disclosure of sexuality among African American and White gay/bisexual men: implications for HIV/AIDS prevention. AIDS Educ Prev 12(6):519 Kennamer JD, Honnold J, Bradford J, Hendricks M (2000) Differences in disclosure of sexuality among African American and White gay/bisexual men: implications for HIV/AIDS prevention. AIDS Educ Prev 12(6):519
55.
Zurück zum Zitat Riis L, Bellotti AC, Castaño O (2003) In field damage of high and low cyanogenic cassava due to a generalist insect herbivore Cyrtomenus bergi (Hemiptera: Cydnidae). J Econ Entomol 96(6):1915–1921CrossRef Riis L, Bellotti AC, Castaño O (2003) In field damage of high and low cyanogenic cassava due to a generalist insect herbivore Cyrtomenus bergi (Hemiptera: Cydnidae). J Econ Entomol 96(6):1915–1921CrossRef
56.
Zurück zum Zitat Akhtar, ABT, Yasar A, Ali R, Irfan R (2017) Phytoremediation using aquatic macrophytes. In: Phytoremediation. Springer, Cham, pp 259–276 Akhtar, ABT, Yasar A, Ali R, Irfan R (2017) Phytoremediation using aquatic macrophytes. In: Phytoremediation. Springer, Cham, pp 259–276
57.
Zurück zum Zitat Ebel A, Memmesheimer M, Jakobs HJ, Feldmann H (2007) Advanced air pollution models and their application to risk and impact assessment. In: Ebel A, Davitashvili T (eds) Air, water and soil quality modelling for risk and impact assessment. Springer, Dordrecht, pp 83–92 Ebel A, Memmesheimer M, Jakobs HJ, Feldmann H (2007) Advanced air pollution models and their application to risk and impact assessment. In: Ebel A, Davitashvili T (eds) Air, water and soil quality modelling for risk and impact assessment. Springer, Dordrecht, pp 83–92
58.
Zurück zum Zitat Fang YY, Yang XE, Chang HQ, Pu PM, Ding XF, Rengel Z (2007) Phytoremediation of nitrogen-polluted water using water hyacinth. J Plant Nutr 30(11):1753–1765CrossRef Fang YY, Yang XE, Chang HQ, Pu PM, Ding XF, Rengel Z (2007) Phytoremediation of nitrogen-polluted water using water hyacinth. J Plant Nutr 30(11):1753–1765CrossRef
59.
Zurück zum Zitat Mishra S, Sharma S, Vasudevan P (2008) Comparative effect of biofertilizers on fodder production and quality in guinea grass (Panicum maximum Jacq.). J Sci Food Agric 88(9):1667–1673 Mishra S, Sharma S, Vasudevan P (2008) Comparative effect of biofertilizers on fodder production and quality in guinea grass (Panicum maximum Jacq.). J Sci Food Agric 88(9):1667–1673
60.
Zurück zum Zitat Giraldo E, Garzon A (2002) The potential for water hyacinth to improve the quality of bogota river water in the muna reservoir: comparison with the performance of waste stabilization ponds. Water Sci Technol 42:103–110CrossRef Giraldo E, Garzon A (2002) The potential for water hyacinth to improve the quality of bogota river water in the muna reservoir: comparison with the performance of waste stabilization ponds. Water Sci Technol 42:103–110CrossRef
61.
Zurück zum Zitat Singh D, Tiwari A, Gupta R (2012) Phytoremediation of lead from wastewater using aquatic plants. J Agric Technol 8(1):1–11 Singh D, Tiwari A, Gupta R (2012) Phytoremediation of lead from wastewater using aquatic plants. J Agric Technol 8(1):1–11
62.
Zurück zum Zitat David GK, Blondeau M, Schiltz S, Penel A, Lewit-Bentley (2003) YodA from Escherichia coli is a metal-binding, lipocalin-like protein. J Biol Chem 278:43728–43735CrossRef David GK, Blondeau M, Schiltz S, Penel A, Lewit-Bentley (2003) YodA from Escherichia coli is a metal-binding, lipocalin-like protein. J Biol Chem 278:43728–43735CrossRef
63.
Zurück zum Zitat Irfan R (2012) Removal efficiency of toxic metals by aquatic macrophytes Eichhornia crassipes and Pistia stratiotes Irfan R (2012) Removal efficiency of toxic metals by aquatic macrophytes Eichhornia crassipes and Pistia stratiotes
64.
Zurück zum Zitat Rai PK, Tripathi BD (2009) Comparative assessment of Azolla pinnata and Vallisneria spiralis in Hg removal from G.B. Pant Sagar of Singrauli Industrial region, India. Environ Monit Assess 148:75–84CrossRef Rai PK, Tripathi BD (2009) Comparative assessment of Azolla pinnata and Vallisneria spiralis in Hg removal from G.B. Pant Sagar of Singrauli Industrial region, India. Environ Monit Assess 148:75–84CrossRef
65.
Zurück zum Zitat Gorelova SV, Frontasyeva MV (2017) The use of higher plants in biomonitoring and environmental bioremediation. In: Phytoremediation. Springer, Cham, pp 103–155 Gorelova SV, Frontasyeva MV (2017) The use of higher plants in biomonitoring and environmental bioremediation. In: Phytoremediation. Springer, Cham, pp 103–155
66.
Zurück zum Zitat Miretzky P, Saralegui A, Fernandez Cirelli A (2004) Aquatic macrophytes potential for the simultaneous removal of heavy metals (Buenos Aires, Argentina). Chemosphere 57:997–1005CrossRef Miretzky P, Saralegui A, Fernandez Cirelli A (2004) Aquatic macrophytes potential for the simultaneous removal of heavy metals (Buenos Aires, Argentina). Chemosphere 57:997–1005CrossRef
67.
Zurück zum Zitat Chong Y, Hu H, Qian Y (2003) Effects of inorganic nitrogen compounds and pH on the growth of duckweed. J Environ Sci 24:35–40 Chong Y, Hu H, Qian Y (2003) Effects of inorganic nitrogen compounds and pH on the growth of duckweed. J Environ Sci 24:35–40
68.
Zurück zum Zitat Denny H, Wilkins D (1987) Zinc tolerance in Betula spp. II. Microanalytical studies of zinc uptake into root tissues. New Physician 106:525–534 Denny H, Wilkins D (1987) Zinc tolerance in Betula spp. II. Microanalytical studies of zinc uptake into root tissues. New Physician 106:525–534
69.
Zurück zum Zitat Gallardo T, Maria, Benson F, Robert, Martin F (1999) Lead accumulation by three aquatic plants. Symposia papers presented before the division of environmental chemistry. Am Chem Soc 39(2):46–47 Gallardo T, Maria, Benson F, Robert, Martin F (1999) Lead accumulation by three aquatic plants. Symposia papers presented before the division of environmental chemistry. Am Chem Soc 39(2):46–47
70.
Zurück zum Zitat Cardwell AJ, Hawker DW, Greenway M (2002) Metal accumulation in aquatic macrophytes from Southeast Queensland, Australia. Chemosphere 48:653–663CrossRef Cardwell AJ, Hawker DW, Greenway M (2002) Metal accumulation in aquatic macrophytes from Southeast Queensland, Australia. Chemosphere 48:653–663CrossRef
71.
Zurück zum Zitat Hammouda O, Gaber A, Abdel-Raouf N (1995) Microalgae and wastewater treatment. Ecotoxicol Environ Saf 31(3):205–210CrossRef Hammouda O, Gaber A, Abdel-Raouf N (1995) Microalgae and wastewater treatment. Ecotoxicol Environ Saf 31(3):205–210CrossRef
72.
Zurück zum Zitat Arreghini S, Cabo LD, Iorio AFD (2006) Phytoremediation of two types of sediment contaminated with Zn by Schoenoplectus americanus. Int J Phytoremediation 8:223–232CrossRef Arreghini S, Cabo LD, Iorio AFD (2006) Phytoremediation of two types of sediment contaminated with Zn by Schoenoplectus americanus. Int J Phytoremediation 8:223–232CrossRef
73.
Zurück zum Zitat Samecka-Cymerman A, Kempers J (1996) Bioaccumulation of heavy metals by aquatic macrophytes around Wrocław, Poland. Ecotoxicol Environ Saf 43:242–247CrossRef Samecka-Cymerman A, Kempers J (1996) Bioaccumulation of heavy metals by aquatic macrophytes around Wrocław, Poland. Ecotoxicol Environ Saf 43:242–247CrossRef
74.
Zurück zum Zitat Mishra VK, Tripathi BD (2008) Concurrent removal and accumulation of heavy metals by the three aquatic macrophytes. Bioresour Technol 99(15):7091–7097CrossRef Mishra VK, Tripathi BD (2008) Concurrent removal and accumulation of heavy metals by the three aquatic macrophytes. Bioresour Technol 99(15):7091–7097CrossRef
76.
Zurück zum Zitat Rafati M, Khorasani N, Moattar F, Shirvany A, Moraghebi F, Hosseinzadeh S (2011) Phytoremediation potential of Populus alba and Morus alba for cadmium, chromuim and nickel absorption from polluted soil. Int J Environ Res 5(4):961–970 Rafati M, Khorasani N, Moattar F, Shirvany A, Moraghebi F, Hosseinzadeh S (2011) Phytoremediation potential of Populus alba and Morus alba for cadmium, chromuim and nickel absorption from polluted soil. Int J Environ Res 5(4):961–970
77.
Zurück zum Zitat Blaylock MJ, Huang JW (2000) Phytoextraction of metals. Phytoremediation of toxic metals: using plants to clean-up the environment. Wiley, New York, pp 53–70 Blaylock MJ, Huang JW (2000) Phytoextraction of metals. Phytoremediation of toxic metals: using plants to clean-up the environment. Wiley, New York, pp 53–70
78.
Zurück zum Zitat Berti WR, Cunningham SD (2000) Phytostabilization of metals. Phytoremediation of toxic metals: using plants to clean-up the environment. Wiley, New York, pp 71–88 Berti WR, Cunningham SD (2000) Phytostabilization of metals. Phytoremediation of toxic metals: using plants to clean-up the environment. Wiley, New York, pp 71–88
79.
Zurück zum Zitat Schnoor JL (2000) Phytostabilization of metals using hybrid poplar trees. Phytoremediation of toxic metals: using plants to clean-up the environment. Wiley, New York, pp 133–150 Schnoor JL (2000) Phytostabilization of metals using hybrid poplar trees. Phytoremediation of toxic metals: using plants to clean-up the environment. Wiley, New York, pp 133–150
80.
Zurück zum Zitat Erakhrumen Agbontalor A (2007) Review phytoremediation: an environmentally sound technology for pollution prevention, control and remediation in developing countries. Educ Res Rev 2(7):151–156 Erakhrumen Agbontalor A (2007) Review phytoremediation: an environmentally sound technology for pollution prevention, control and remediation in developing countries. Educ Res Rev 2(7):151–156
81.
Zurück zum Zitat Etim EE (2012) Review: phytoremediation and its mechanisms. Int J Environ Bioenergy 2(3):120–136 Etim EE (2012) Review: phytoremediation and its mechanisms. Int J Environ Bioenergy 2(3):120–136
82.
Zurück zum Zitat Rawat K, Fulekar MH, Pathak B (2012) Rhizofiltration: a green technology for remediation of heavy metals. Int J Innov in Biosci 2(4):193–199 Rawat K, Fulekar MH, Pathak B (2012) Rhizofiltration: a green technology for remediation of heavy metals. Int J Innov in Biosci 2(4):193–199
83.
Zurück zum Zitat Ensley BD (2000) Rationale for the use of phytoremediation. Phytoremediation of toxic metals: using plants to clean-up the environment. Wiley, New York, pp 205–210 Ensley BD (2000) Rationale for the use of phytoremediation. Phytoremediation of toxic metals: using plants to clean-up the environment. Wiley, New York, pp 205–210
84.
Zurück zum Zitat Liu P, Qiu GL, Shang LH (2007) Phytoremediation of mercury contaminated soil: a review. Chinese J Ecol 6:27 Liu P, Qiu GL, Shang LH (2007) Phytoremediation of mercury contaminated soil: a review. Chinese J Ecol 6:27
85.
Zurück zum Zitat Banuelos GS, Lin ZQ, Wu L, Terry N (2002) Phytoremediation of selenium-contaminated soils and waters: fundamentals and future prospects. Rev Environ Health 17(4):291–306CrossRef Banuelos GS, Lin ZQ, Wu L, Terry N (2002) Phytoremediation of selenium-contaminated soils and waters: fundamentals and future prospects. Rev Environ Health 17(4):291–306CrossRef
86.
Zurück zum Zitat Rugh C, Bizily SP, Meagher RB (2000) Phytoreduction of environmental mercury pollution. Phytoremediation of toxic metals: using plants to clean-up the environment. Wiley, New York, pp 151–170 Rugh C, Bizily SP, Meagher RB (2000) Phytoreduction of environmental mercury pollution. Phytoremediation of toxic metals: using plants to clean-up the environment. Wiley, New York, pp 151–170
87.
Zurück zum Zitat Padmavathiamma PK, Li LY (2007) Phytoremediation technology: hyperaccumulation metals in plants. Water Air Soil Pollut 184:105–126CrossRef Padmavathiamma PK, Li LY (2007) Phytoremediation technology: hyperaccumulation metals in plants. Water Air Soil Pollut 184:105–126CrossRef
88.
Zurück zum Zitat Chakravorty A, Rather GA, Ali A et al (2020) Nano approach. In: Ethnopharmacological investigation of Indian spices. IGI Global, pp 205–241 Chakravorty A, Rather GA, Ali A et al (2020) Nano approach. In: Ethnopharmacological investigation of Indian spices. IGI Global, pp 205–241
90.
Zurück zum Zitat SCENIHR (2010) Opinion on the scientific basis for the definition of the term “nanomaterial”. Scientific committee on emerging and newly identified health risks (SCENIHR), European Commission Brussels, Belgium SCENIHR (2010) Opinion on the scientific basis for the definition of the term “nanomaterial”. Scientific committee on emerging and newly identified health risks (SCENIHR), European Commission Brussels, Belgium
92.
Zurück zum Zitat EU (2011) Commission recommendation of 18 October 2011 on the definition of nanomaterial (2011/696/EU). Official J L 275:38–40 EU (2011) Commission recommendation of 18 October 2011 on the definition of nanomaterial (2011/696/EU). Official J L 275:38–40
98.
Zurück zum Zitat SCENIHR (2006) Modified opinion (after public consultation) on the appropriateness of existing methodologies to assess the potential risks associated with engineered and adventitious products of nanotechnologies SCENIHR (2006) Modified opinion (after public consultation) on the appropriateness of existing methodologies to assess the potential risks associated with engineered and adventitious products of nanotechnologies
100.
Zurück zum Zitat Mudgal S, Monier V, Long LV, André N, Anderson G (2011, August 11) European Commission (DG ENV)—Study on coherence of waste legislation—Final report Mudgal S, Monier V, Long LV, André N, Anderson G (2011, August 11) European Commission (DG ENV)—Study on coherence of waste legislation—Final report
101.
102.
Zurück zum Zitat Rashidi O, Ramya R, Baharuddin ZM, Hashim KSH, Yaman M (2015) Response of Lemna minor and Salninia natans as phyroremediation agents towards Fe, Cu and Zn toxicities via in vivo model system. Jurnal Teknologi 77(30):101–109 Rashidi O, Ramya R, Baharuddin ZM, Hashim KSH, Yaman M (2015) Response of Lemna minor and Salninia natans as phyroremediation agents towards Fe, Cu and Zn toxicities via in vivo model system. Jurnal Teknologi 77(30):101–109
105.
Zurück zum Zitat Javed MT, Tanwir K, Akram MS et al (2019) Chapter 20—phytoremediation of cadmium-polluted water/sediment by aquatic macrophytes: role of plant-induced pH changes. In: Hasanuzzaman M, Prasad MNV, Fujita M (eds) Cadmium toxicity and tolerance in plants. Academic Press, pp 495–529 Javed MT, Tanwir K, Akram MS et al (2019) Chapter 20—phytoremediation of cadmium-polluted water/sediment by aquatic macrophytes: role of plant-induced pH changes. In: Hasanuzzaman M, Prasad MNV, Fujita M (eds) Cadmium toxicity and tolerance in plants. Academic Press, pp 495–529
106.
Zurück zum Zitat Dhanwal P, Kumar A, Dudeja S et al (2017) Recent advances in phytoremediation technology. In: Kumar R, Sharma AK, Ahluwalia SS (eds) Advances in environmental biotechnology. Springer, Singapore, pp 227–241CrossRef Dhanwal P, Kumar A, Dudeja S et al (2017) Recent advances in phytoremediation technology. In: Kumar R, Sharma AK, Ahluwalia SS (eds) Advances in environmental biotechnology. Springer, Singapore, pp 227–241CrossRef
107.
Zurück zum Zitat Pajević S, Borišev M, Nikolić N et al (2016) Phytoextraction of heavy metals by fast-growing trees: a review. In: Phytoremediation. Springer, Berlin, pp 29–64 Pajević S, Borišev M, Nikolić N et al (2016) Phytoextraction of heavy metals by fast-growing trees: a review. In: Phytoremediation. Springer, Berlin, pp 29–64
108.
Zurück zum Zitat Ghosh M, Singh SP (2005) A review on phytoremediation of heavy metals and utilization of its by products Ghosh M, Singh SP (2005) A review on phytoremediation of heavy metals and utilization of its by products
109.
Zurück zum Zitat Jadia CD, Fulekar M (2008) Phytoremediation: the application of vermicompost to remove zinc, cadmium, copper, nickel and lead by sunflower plant Jadia CD, Fulekar M (2008) Phytoremediation: the application of vermicompost to remove zinc, cadmium, copper, nickel and lead by sunflower plant
113.
Zurück zum Zitat Sytar O, Brestic M, Taran N, Zivcak M (2016) Chapter 14—plants used for biomonitoring and phytoremediation of trace elements in soil and water. In: Ahmad P (ed) Plant metal interaction. Elsevier, Netherlands, pp 361–384 Sytar O, Brestic M, Taran N, Zivcak M (2016) Chapter 14—plants used for biomonitoring and phytoremediation of trace elements in soil and water. In: Ahmad P (ed) Plant metal interaction. Elsevier, Netherlands, pp 361–384
Metadaten
Titel
Recycle Strategies to Deal with Metal Nanomaterials by Using Aquatic Plants Through Phytoremediation Technique
verfasst von
Jyoti Mehta
Moharana Choudhury
Arghya Chakravorty
Rehab A. Rayan
Neeta Laxman Lala
Andrews Grace Nirmala
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-68031-2_20

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.