Skip to main content

2020 | OriginalPaper | Buchkapitel

Recycling Industrial Waste for Production of Bioethanol

verfasst von : Swagata Das, Shubhalakshmi Sengupta, Papita Das, Siddhartha Datta

Erschienen in: Energy Recovery Processes from Wastes

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In need to overcome the environmental impacts and dearth of fuels, eco-friendly technologies such as biofuels are being developed. Researchers are putting in effort to convert huge amount of lignocellulosic wastes to biofuels such as bioethanol. The main aim for all the second generation biofuels are implying waste management and developing eco-friendly products using the wastes. These wastes are the ways to sustainable waste management. The proper handling of these wastes is too essential, as these cause a threat to the environment. Hence, experimental researches have been focussed on the production of cellulosic bioethanol. Jute caddies were taken up as a potential source for utilizing it for the production of bioethanol. Jute contains a large amount of cellulose, about 60%, which is the major constituent for the conversion to bioethanol. Cellulose is a hard crystalline structure and therefore is subjected to different chemical pretreatments for its degradation and release of fermentable sugars such as glucose, xylose and arabinose as the predominant sugars. Pretreatments such as alkali and alkali plus dilute acid treatment were done followed by enzymatic saccharification using Aspergillus niger. Fermentation was the next crucial step for the consumption of these fermentable sugars (simple and complex) by microorganism, for production of bioethanol. Saccharomyces cerevisiae (yeast) was used to study the effect on the uptake of these sugars and conversion to bioethanol. The yield was 27% ethanol in this experiment.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Wyman, C. E., Cai, C. M., & Kumar, R. (2017). Bioethanol from lignocellulosic biomass. Encyclopedia of Sustainability Science and Technology, pp. 1–27. Wyman, C. E., Cai, C. M., & Kumar, R. (2017). Bioethanol from lignocellulosic biomass. Encyclopedia of Sustainability Science and Technology, pp. 1–27.
2.
Zurück zum Zitat Saini, J. K., Saini, R., & Tewari, L. (2015). Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: Concepts and recent developments. 3 Biotech, 5(4), 337–353. Saini, J. K., Saini, R., & Tewari, L. (2015). Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: Concepts and recent developments. 3 Biotech, 5(4), 337–353.
3.
Zurück zum Zitat Tokic, M., Hadadi, N., Ataman, M., Miskovic, L., Neves, D., Ebert, B., Blank, L., & Hatzimanikatis, V. (2016). Discovery and evaluation of novel pathways for production of the second generation of biofuels (No. POST_TALK). Tokic, M., Hadadi, N., Ataman, M., Miskovic, L., Neves, D., Ebert, B., Blank, L., & Hatzimanikatis, V. (2016). Discovery and evaluation of novel pathways for production of the second generation of biofuels (No. POST_TALK).
4.
Zurück zum Zitat Juneius, C. E. R., & Kavitha, J. (2017). Bioconversion of cellulosic waste into bioethanol—A synergistic interaction of trichoderma viride and Saccharomyces cerevisiae. In Bioremediation and sustainable technologies for cleaner environment (pp. 201–211). Cham: Springer. Juneius, C. E. R., & Kavitha, J. (2017). Bioconversion of cellulosic waste into bioethanol—A synergistic interaction of trichoderma viride and Saccharomyces cerevisiae. In Bioremediation and sustainable technologies for cleaner environment (pp. 201–211). Cham: Springer.
5.
Zurück zum Zitat Farrell, A. E., Plevin, R. J., Turner, B. T., Jones, A. D., O’hare, M., & Kammen, D. M. (2006). Ethanol can contribute to energy and environmental goals. Science, 311(5760), 506–508. Farrell, A. E., Plevin, R. J., Turner, B. T., Jones, A. D., O’hare, M., & Kammen, D. M. (2006). Ethanol can contribute to energy and environmental goals. Science, 311(5760), 506–508.
6.
Zurück zum Zitat Bergeron, P. (2018). Environmental impacts of bioethanol. In Handbookon bioethanol (pp. 89–103). Routledge. Bergeron, P. (2018). Environmental impacts of bioethanol. In Handbookon bioethanol (pp. 89–103). Routledge.
7.
Zurück zum Zitat Manna, S., Saha, P., Chowdhury, S., Thomas, S., & Sharma, V. (2017). Alkali treatment to improve physical, mechanical and chemical properties of lignocellulosic natural fibers for use in various applications. Lignocellulosic Biomass Production and Industrial Applications, pp. 47–63. Manna, S., Saha, P., Chowdhury, S., Thomas, S., & Sharma, V. (2017). Alkali treatment to improve physical, mechanical and chemical properties of lignocellulosic natural fibers for use in various applications. Lignocellulosic Biomass Production and Industrial Applications, pp. 47–63.
8.
Zurück zum Zitat Ribeiro, I. A., Bronze, M. R., Castro, M. F., & Ribeiro, M. H. (2016). Selective recovery of acidic and Lactonic sophorolipids from culture broths towards the improvement of their therapeutic potential. Bioprocess and Biosystems Engineering, 39(12), 1825–1837.CrossRef Ribeiro, I. A., Bronze, M. R., Castro, M. F., & Ribeiro, M. H. (2016). Selective recovery of acidic and Lactonic sophorolipids from culture broths towards the improvement of their therapeutic potential. Bioprocess and Biosystems Engineering, 39(12), 1825–1837.CrossRef
9.
Zurück zum Zitat Pierce, B. C., Agger, J. W., Wichmann, J., & Meyer, A. S. (2017). Oxidative cleavage and hydrolytic boosting of cellulose in soybean spent flakes by Trichoderma reesei Cel61A lytic polysaccharide monooxygenase. Enzyme and Microbial Technology, 98, 58–66.CrossRef Pierce, B. C., Agger, J. W., Wichmann, J., & Meyer, A. S. (2017). Oxidative cleavage and hydrolytic boosting of cellulose in soybean spent flakes by Trichoderma reesei Cel61A lytic polysaccharide monooxygenase. Enzyme and Microbial Technology, 98, 58–66.CrossRef
10.
Zurück zum Zitat Fu, C. C., Hung, T. C., Chen, J. Y., Su, C. H., & Wu, W. T. (2010). Hydrolysis of microalgae cell walls for production of reducing sugar and lipid extraction. Bioresource Technology, 101(22), 8750–8754.CrossRef Fu, C. C., Hung, T. C., Chen, J. Y., Su, C. H., & Wu, W. T. (2010). Hydrolysis of microalgae cell walls for production of reducing sugar and lipid extraction. Bioresource Technology, 101(22), 8750–8754.CrossRef
11.
Zurück zum Zitat Paschos, T., Xiros, C., & Christakopoulos, P. (2015). Simultaneous saccharification and fermentation by co-cultures of Fusarium oxysporum and Saccharomyces cerevisiae enhances ethanol production from liquefied wheat straw at high solid content. Industrial Crops and Products, 76, 793–802.CrossRef Paschos, T., Xiros, C., & Christakopoulos, P. (2015). Simultaneous saccharification and fermentation by co-cultures of Fusarium oxysporum and Saccharomyces cerevisiae enhances ethanol production from liquefied wheat straw at high solid content. Industrial Crops and Products, 76, 793–802.CrossRef
12.
Zurück zum Zitat Miah, R., Siddiqa, A., Tuli, J. F., Barman, N. K., Dey, S. K., Adnan, N., et al. (2017). Inexpensive procedure for measurement of ethanol: Application to bioethanol production process. Advances in Microbiology, 7(11), 743.CrossRef Miah, R., Siddiqa, A., Tuli, J. F., Barman, N. K., Dey, S. K., Adnan, N., et al. (2017). Inexpensive procedure for measurement of ethanol: Application to bioethanol production process. Advances in Microbiology, 7(11), 743.CrossRef
13.
Zurück zum Zitat Darmanto, S., Rochardjo, H. S., Jamasri, & Widyorini, R. (January, 2017). Effects of alkali and steaming on mechanical properties of snake fruit (Salacca) fiber. In AIP Conference Proceedings (Vol. 1788, No. 1, p. 030060). AIP Publishing. Darmanto, S., Rochardjo, H. S., Jamasri, & Widyorini, R. (January, 2017). Effects of alkali and steaming on mechanical properties of snake fruit (Salacca) fiber. In AIP Conference Proceedings (Vol. 1788, No. 1, p. 030060). AIP Publishing.
14.
Zurück zum Zitat Coughlan, M. P. (1991). Mechanisms of cellulose degradation by fungi and bacteria. Animal Feed Science and Technology, 32(1–3), 77–100.CrossRef Coughlan, M. P. (1991). Mechanisms of cellulose degradation by fungi and bacteria. Animal Feed Science and Technology, 32(1–3), 77–100.CrossRef
15.
Zurück zum Zitat Yoon, S. Y., Han, S. H., & Shin, S. J. (2014). The effect of hemicelluloses and lignin on acid hydrolysis of cellulose. Energy, 77, 19–24.CrossRef Yoon, S. Y., Han, S. H., & Shin, S. J. (2014). The effect of hemicelluloses and lignin on acid hydrolysis of cellulose. Energy, 77, 19–24.CrossRef
Metadaten
Titel
Recycling Industrial Waste for Production of Bioethanol
verfasst von
Swagata Das
Shubhalakshmi Sengupta
Papita Das
Siddhartha Datta
Copyright-Jahr
2020
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-32-9228-4_12