Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 13/2019

28.05.2019

Reduced graphene oxide-SnO2 nanosheets hybrid nanocomposite for improvement of formaldehyde sensing properties

verfasst von: Qi Wei, Shengkai Liu, Peng Song, Zhongxi Yang, Qi Wang

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 13/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Two-dimensional (2D) nanomaterials and their composites have become a popular area among researchers owing to their superior properties which can be attributed to the planar structure. In this work, we used a hydrothermal method to generate ultrathin SnO2 nanosheets with thickness of ~ 5 nm on the reduced graphene oxide (rGO) layer to construct sheet-on-sheet heterostructured architectures. The sensor response of rGO/SnO2 nanosheets composites is 11.9 to 100 ppm formaldehyde at the optimal operating temperature of 220 °C. Besides of the superior sensor response at lower working temperature, the rGO/SnO2 nanosheets composites sensor exhibited good selectivity and fast response/recover performance. These strengths revealed the promising applications of the rGO/SnO2 nanosheets composites in practical detection. The present work definitely reveals the advantages of rGO/SnO2 nanosheets composites featured with a sheet-on-sheet architecture between two different nanosheets in gas sensing applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat N. Yamazoe, Toward innovations of gas sensor technology. Sens. Actuators B 108, 2–14 (2005)CrossRef N. Yamazoe, Toward innovations of gas sensor technology. Sens. Actuators B 108, 2–14 (2005)CrossRef
2.
Zurück zum Zitat W.S. Huang, W. Wei, L.B. Weschler, T. Salthammer, H. Kan, Z. Bu, Y. Zhang, Indoor formaldehyde concentrations in urban China: preliminary study of some important influencing factors. Sci. Total Environ. 590, 394–405 (2017)CrossRef W.S. Huang, W. Wei, L.B. Weschler, T. Salthammer, H. Kan, Z. Bu, Y. Zhang, Indoor formaldehyde concentrations in urban China: preliminary study of some important influencing factors. Sci. Total Environ. 590, 394–405 (2017)CrossRef
3.
Zurück zum Zitat C.A. McLinden, V. Fioletov, M.W. Shephard, N. Krotkov, C. Li, R.V. Martin, M.D. Moran, J. Joiner, Space-based detection of missing sulfur dioxide sources of global air pollution. Nat. Geosci. 9, 496–500 (2016)CrossRef C.A. McLinden, V. Fioletov, M.W. Shephard, N. Krotkov, C. Li, R.V. Martin, M.D. Moran, J. Joiner, Space-based detection of missing sulfur dioxide sources of global air pollution. Nat. Geosci. 9, 496–500 (2016)CrossRef
4.
Zurück zum Zitat R. Xu, L.X. Zhang, M.W. Li, Y.Y. Yin, J. Yin, M.Y. Zhu, J.J. Chen, Y. Wang, L.J. Bie, Ultrathin SnO2 nanosheets with dominant high-energy 001 facets for low temperature formaldehyde gas sensor. Sens. Actuators B 289, 186–194 (2019)CrossRef R. Xu, L.X. Zhang, M.W. Li, Y.Y. Yin, J. Yin, M.Y. Zhu, J.J. Chen, Y. Wang, L.J. Bie, Ultrathin SnO2 nanosheets with dominant high-energy 001 facets for low temperature formaldehyde gas sensor. Sens. Actuators B 289, 186–194 (2019)CrossRef
5.
Zurück zum Zitat J.H. Sun, S.L. Bai, Y. Tian, Y.H. Zhao, N. Han, R.X. Luo, D.Q. Li, A.F. Chen, Hybridization of ZnSnO3 and rGO for improvement of formaldehyde sensing properties. Sens Actuators B 257, 29–36 (2018)CrossRef J.H. Sun, S.L. Bai, Y. Tian, Y.H. Zhao, N. Han, R.X. Luo, D.Q. Li, A.F. Chen, Hybridization of ZnSnO3 and rGO for improvement of formaldehyde sensing properties. Sens Actuators B 257, 29–36 (2018)CrossRef
6.
Zurück zum Zitat K.M. Zhu, S.Y. Ma, Preparations of Bi-doped SnO2 hierarchical flower-shaped nanostructures with highly sensitive HCHO sensing properties. Mater. Lett. 236, 491–494 (2019)CrossRef K.M. Zhu, S.Y. Ma, Preparations of Bi-doped SnO2 hierarchical flower-shaped nanostructures with highly sensitive HCHO sensing properties. Mater. Lett. 236, 491–494 (2019)CrossRef
7.
Zurück zum Zitat Y.X. Zhang, W. Zeng, H. Ye, Y.Q. Li, Enhanced carbon monoxide sensing properties of TiO2 with exposed (001) facet: a combined first-principle and experimental study. Appl. Surf. Sci. 442, 507–516 (2018)CrossRef Y.X. Zhang, W. Zeng, H. Ye, Y.Q. Li, Enhanced carbon monoxide sensing properties of TiO2 with exposed (001) facet: a combined first-principle and experimental study. Appl. Surf. Sci. 442, 507–516 (2018)CrossRef
8.
Zurück zum Zitat L. Zhu, W. Zeng, Room-temperature gas sensing of ZnO-based gas sensor: a review. Sens. Actuators B 267, 242–261 (2017)CrossRef L. Zhu, W. Zeng, Room-temperature gas sensing of ZnO-based gas sensor: a review. Sens. Actuators B 267, 242–261 (2017)CrossRef
9.
Zurück zum Zitat D. Han, P. Song, S. Zhang, H.H. Zhang, Q. Xu, Q. Wang, Enhanced methanol gas-sensing performance of Ce-doped In2O3 porous nanospheres prepared by hydrothermal method. Sens. Actuators B 216, 488–496 (2015)CrossRef D. Han, P. Song, S. Zhang, H.H. Zhang, Q. Xu, Q. Wang, Enhanced methanol gas-sensing performance of Ce-doped In2O3 porous nanospheres prepared by hydrothermal method. Sens. Actuators B 216, 488–496 (2015)CrossRef
10.
Zurück zum Zitat S. Das, V. Jayaraman, SnO2: a comprehensive review on structures and gas sensors. Prog. Mater Sci. 66, 112–255 (2014)CrossRef S. Das, V. Jayaraman, SnO2: a comprehensive review on structures and gas sensors. Prog. Mater Sci. 66, 112–255 (2014)CrossRef
11.
Zurück zum Zitat P. Song, D. Han, H.H. Zhang, J. Li, Z.X. Yang, Q. Wang, Hydrothermal synthesis of porous In2O3 nanospheres with superior ethanol sensing properties. Sens. Actuators B 196, 434–439 (2014)CrossRef P. Song, D. Han, H.H. Zhang, J. Li, Z.X. Yang, Q. Wang, Hydrothermal synthesis of porous In2O3 nanospheres with superior ethanol sensing properties. Sens. Actuators B 196, 434–439 (2014)CrossRef
12.
Zurück zum Zitat X.Y. Kou, C. Wang, M.D. Ding, C.H. Feng, X. Li, J. Ma, H. Zhang, Y.F. Sun, G.Y. Lu, Synthesis of Co-doped SnO2 nanofibers and their enhanced gas-sensing properties. Sens. Actuators, B 236, 425–432 (2016)CrossRef X.Y. Kou, C. Wang, M.D. Ding, C.H. Feng, X. Li, J. Ma, H. Zhang, Y.F. Sun, G.Y. Lu, Synthesis of Co-doped SnO2 nanofibers and their enhanced gas-sensing properties. Sens. Actuators, B 236, 425–432 (2016)CrossRef
13.
Zurück zum Zitat F. Li, L. Chen, G.P. Knowles, D.R. MacFarlane, J. Zhang, Hierarchical mesoporous SnO2 nanosheets on carbon cloth: a robust and flexible electrocatalyst for CO2 reduction with high efficiency and selectivity. Angew. Chem. Int. Edit. 56, 505–509 (2017)CrossRef F. Li, L. Chen, G.P. Knowles, D.R. MacFarlane, J. Zhang, Hierarchical mesoporous SnO2 nanosheets on carbon cloth: a robust and flexible electrocatalyst for CO2 reduction with high efficiency and selectivity. Angew. Chem. Int. Edit. 56, 505–509 (2017)CrossRef
14.
Zurück zum Zitat T.M. Li, W. Zeng, New insight into the gas sensing performance of SnO2 Nanorod-assembled urchins based on their assembly density. Ceram. Inter. 43, 728–735 (2017)CrossRef T.M. Li, W. Zeng, New insight into the gas sensing performance of SnO2 Nanorod-assembled urchins based on their assembly density. Ceram. Inter. 43, 728–735 (2017)CrossRef
15.
Zurück zum Zitat Q. Qi, P.P. Wang, J. Zhao, L.L. Feng, L.J. Zhou, R.F. Xuan, Y.P. Liu, G.D. Li, SnO2 nanoparticle-coated In2O3 nanofibers with improved NH3 sensing properties. Sens. Actuators B 194, 440–446 (2014)CrossRef Q. Qi, P.P. Wang, J. Zhao, L.L. Feng, L.J. Zhou, R.F. Xuan, Y.P. Liu, G.D. Li, SnO2 nanoparticle-coated In2O3 nanofibers with improved NH3 sensing properties. Sens. Actuators B 194, 440–446 (2014)CrossRef
16.
Zurück zum Zitat W.X. Jin, S.Y. Ma, Z.Z. Tie, J.J. Wei, J. Luo, X.H. Jiang, T.T. Wang, W.Q. Li, L. Cheng, Y.Z. Mao, One-step synthesis and highly gas-sensing properties of hierarchical Cu-doped SnO2 nanoflowers. Sens. Actuators B 213, 171–180 (2015)CrossRef W.X. Jin, S.Y. Ma, Z.Z. Tie, J.J. Wei, J. Luo, X.H. Jiang, T.T. Wang, W.Q. Li, L. Cheng, Y.Z. Mao, One-step synthesis and highly gas-sensing properties of hierarchical Cu-doped SnO2 nanoflowers. Sens. Actuators B 213, 171–180 (2015)CrossRef
17.
Zurück zum Zitat S. Yan, J.Z. Xue, Q.S. Wu, Synchronous synthesis and sensing performance of α-Fe2O3/SnO2 nanofiber heterostructures for conductometric C2H5OH detection. Sens. Actuators B 275, 322–331 (2018)CrossRef S. Yan, J.Z. Xue, Q.S. Wu, Synchronous synthesis and sensing performance of α-Fe2O3/SnO2 nanofiber heterostructures for conductometric C2H5OH detection. Sens. Actuators B 275, 322–331 (2018)CrossRef
18.
Zurück zum Zitat P. Pascariu, A. Airinei, N. Olaru, I. Petrila, V. Nica, L. Sacarescu, F. Tudorache, Microstructure, electrical and humidity sensor properties of electrospun NiO–SnO2 nanofibers. Sens. Actuators B 222, 1024–1031 (2016)CrossRef P. Pascariu, A. Airinei, N. Olaru, I. Petrila, V. Nica, L. Sacarescu, F. Tudorache, Microstructure, electrical and humidity sensor properties of electrospun NiO–SnO2 nanofibers. Sens. Actuators B 222, 1024–1031 (2016)CrossRef
19.
Zurück zum Zitat L. Wang, Y. Wang, K. Yu, S. Wang, Y. Zhang, C. Wei, A novel low temperature gas sensor based on Pt-decorated hierarchical 3D SnO2 nanosheets composites. Sens. Actuators B 232, 91–101 (2016)CrossRef L. Wang, Y. Wang, K. Yu, S. Wang, Y. Zhang, C. Wei, A novel low temperature gas sensor based on Pt-decorated hierarchical 3D SnO2 nanosheets composites. Sens. Actuators B 232, 91–101 (2016)CrossRef
20.
Zurück zum Zitat C.A. Zito, T.M. Perfecto, D.P. Volanti, Palladium-loaded hierarchical flower-like tin dioxide structure as chemosensor exhibiting high ethanol response in humid conditions. Adv. Mater. Inter. 4, 1700847 (2017)CrossRef C.A. Zito, T.M. Perfecto, D.P. Volanti, Palladium-loaded hierarchical flower-like tin dioxide structure as chemosensor exhibiting high ethanol response in humid conditions. Adv. Mater. Inter. 4, 1700847 (2017)CrossRef
21.
Zurück zum Zitat B.Y. Wei, M.C. Hsu, P.G. Su, H.M. Lin, R.J. Wu, H.J. Lai, A novel SnO2 gas sensor doped with carbon nanotubes operating at room temperature. Sens. Actuators B 101, 81–89 (2004)CrossRef B.Y. Wei, M.C. Hsu, P.G. Su, H.M. Lin, R.J. Wu, H.J. Lai, A novel SnO2 gas sensor doped with carbon nanotubes operating at room temperature. Sens. Actuators B 101, 81–89 (2004)CrossRef
22.
Zurück zum Zitat G.H. Lu, L.E. Ocola, J.H. Chen, Room-temperature gas sensing based on electron transfer between discrete tin oxide nanocrystals and multiwalled carbon nanotubes. Adv. Mater. 21, 2487–2491 (2009)CrossRef G.H. Lu, L.E. Ocola, J.H. Chen, Room-temperature gas sensing based on electron transfer between discrete tin oxide nanocrystals and multiwalled carbon nanotubes. Adv. Mater. 21, 2487–2491 (2009)CrossRef
23.
Zurück zum Zitat L. Li, S.J. He, M.M. Liu, C.M. Zhang, W. Chen, Three-dimensional mesoporous graphene aerogel-supported SnO2 nanocrystals for high-performance NO2 gas sensing at low temperature. Anal. Chem. 87, 1638–1645 (2015)CrossRef L. Li, S.J. He, M.M. Liu, C.M. Zhang, W. Chen, Three-dimensional mesoporous graphene aerogel-supported SnO2 nanocrystals for high-performance NO2 gas sensing at low temperature. Anal. Chem. 87, 1638–1645 (2015)CrossRef
24.
Zurück zum Zitat R. Ghosh, S. Santra, S.K. Ray, P.K. Guha, Pt-functionalized reduced graphene oxide for excellent hydrogen sensing at room temperature. Appl. Phys. Lett. 107, 719–724 (2015) R. Ghosh, S. Santra, S.K. Ray, P.K. Guha, Pt-functionalized reduced graphene oxide for excellent hydrogen sensing at room temperature. Appl. Phys. Lett. 107, 719–724 (2015)
25.
Zurück zum Zitat K. Toda, R. Furue, S.Y. Hayami, Recent progress in applications of graphene oxide for gas sensing: a review. Anal. Chim. Acta 878, 43–53 (2015)CrossRef K. Toda, R. Furue, S.Y. Hayami, Recent progress in applications of graphene oxide for gas sensing: a review. Anal. Chim. Acta 878, 43–53 (2015)CrossRef
26.
Zurück zum Zitat R. Ghosh, A.K. Nayak, S. Santra, D. Pradhan, P.K. Guha, Enhanced ammonia sensing at room temperature with reduced graphene oxide/tin oxide hybrid films. RSC Adv. 5, 50165–50173 (2015)CrossRef R. Ghosh, A.K. Nayak, S. Santra, D. Pradhan, P.K. Guha, Enhanced ammonia sensing at room temperature with reduced graphene oxide/tin oxide hybrid films. RSC Adv. 5, 50165–50173 (2015)CrossRef
27.
Zurück zum Zitat C.A. Zito, T.M. Perfecto, D.P. Volanti, Impact of reduced graphene oxide on the ethanol sensing performance of hollow SnO2 nanoparticles under humid atmosphere. Sens. Actuators B 244, 466–474 (2017)CrossRef C.A. Zito, T.M. Perfecto, D.P. Volanti, Impact of reduced graphene oxide on the ethanol sensing performance of hollow SnO2 nanoparticles under humid atmosphere. Sens. Actuators B 244, 466–474 (2017)CrossRef
28.
Zurück zum Zitat H. Zhang, J. Feng, T. Fei, S. Liu, T. Zhang, SnO2 nanoparticles-reduced graphene oxide nanosheets composites for NO2 sensing at low operating temperature. Sens. Actuators B 190, 472–478 (2014)CrossRef H. Zhang, J. Feng, T. Fei, S. Liu, T. Zhang, SnO2 nanoparticles-reduced graphene oxide nanosheets composites for NO2 sensing at low operating temperature. Sens. Actuators B 190, 472–478 (2014)CrossRef
29.
Zurück zum Zitat Y. Chen, W. Zhang, Q. Wu, A highly sensitive room-temperature sensing material for NH3: SnO2-nanorods coupled by rGO. Sens. Actuators B 242, 1216–1226 (2017)CrossRef Y. Chen, W. Zhang, Q. Wu, A highly sensitive room-temperature sensing material for NH3: SnO2-nanorods coupled by rGO. Sens. Actuators B 242, 1216–1226 (2017)CrossRef
30.
Zurück zum Zitat D. Wang, M. Zhang, Z. Chen, H. Li, A. Chen, X. Wang, J. Yang, Enhanced formaldehyde sensing properties of hollow SnO2 nanofibers by graphene oxide. Sens. Actuators B 250, 533–542 (2017)CrossRef D. Wang, M. Zhang, Z. Chen, H. Li, A. Chen, X. Wang, J. Yang, Enhanced formaldehyde sensing properties of hollow SnO2 nanofibers by graphene oxide. Sens. Actuators B 250, 533–542 (2017)CrossRef
31.
Zurück zum Zitat J.H. Lee, A. Katoch, S.W. Choi, J.H. Kim, H.W. Kim, S.S. Kim, Extraordinary improvement of gas-sensing performances in SnO2 nanofibers due to creation of local p–n heterojunctions by loading reduced graphene oxide nanosheets. ACS Appl. Mater. Inter. 7, 3101–3109 (2015)CrossRef J.H. Lee, A. Katoch, S.W. Choi, J.H. Kim, H.W. Kim, S.S. Kim, Extraordinary improvement of gas-sensing performances in SnO2 nanofibers due to creation of local p–n heterojunctions by loading reduced graphene oxide nanosheets. ACS Appl. Mater. Inter. 7, 3101–3109 (2015)CrossRef
32.
Zurück zum Zitat Z. Song, J. Liu, Q. Liu, H. Yu, W. Zhang, Y. Wang, Z. Huang, J. Zang, H. Liu, Enhanced H2S gas sensing properties based on SnO2 quantum wire/reduced graphene oxide nanosheets composites: equilibrium and kinetics modeling. Sens. Actuators B 249, 632–638 (2017)CrossRef Z. Song, J. Liu, Q. Liu, H. Yu, W. Zhang, Y. Wang, Z. Huang, J. Zang, H. Liu, Enhanced H2S gas sensing properties based on SnO2 quantum wire/reduced graphene oxide nanosheets composites: equilibrium and kinetics modeling. Sens. Actuators B 249, 632–638 (2017)CrossRef
33.
Zurück zum Zitat Q.J. Xiang, J.G. Yu, M. Jaroniec, Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles. J. Am. Chem. Soc. 134, 6575–6578 (2012)CrossRef Q.J. Xiang, J.G. Yu, M. Jaroniec, Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles. J. Am. Chem. Soc. 134, 6575–6578 (2012)CrossRef
34.
Zurück zum Zitat J. Zhou, G.H. Tian, Y.J. Chen, X.Y. Meng, Y.H. Shi, X.R. Cao, K. Pan, H.G. Fu, In situ controlled growth of ZnIn2S4 nanosheets on reduced graphene oxide for enhanced photocatalytic hydrogen production performance. Chem. Commun. 49, 2237–2239 (2013)CrossRef J. Zhou, G.H. Tian, Y.J. Chen, X.Y. Meng, Y.H. Shi, X.R. Cao, K. Pan, H.G. Fu, In situ controlled growth of ZnIn2S4 nanosheets on reduced graphene oxide for enhanced photocatalytic hydrogen production performance. Chem. Commun. 49, 2237–2239 (2013)CrossRef
35.
Zurück zum Zitat L.W. Wang, S.R. Wang, Y.S. Wang, H.X. Zhang, Y.F. Kang, W.P. Huang, Synthesis of hierarchical SnO2 nanostructures assembled with nanosheets and their improved gas sensing properties. Sens. Actuators B 188, 85–93 (2013)CrossRef L.W. Wang, S.R. Wang, Y.S. Wang, H.X. Zhang, Y.F. Kang, W.P. Huang, Synthesis of hierarchical SnO2 nanostructures assembled with nanosheets and their improved gas sensing properties. Sens. Actuators B 188, 85–93 (2013)CrossRef
36.
Zurück zum Zitat L. Liu, Y.T. Zhao, P. Song, Z.X. Yang, Q. Wang, ppb level triethylamine detection of yolk-shell SnO2/Au/Fe2O3 nanoboxes at low-temperature. Appl. Surf. Sci. 476, 391–401 (2019)CrossRef L. Liu, Y.T. Zhao, P. Song, Z.X. Yang, Q. Wang, ppb level triethylamine detection of yolk-shell SnO2/Au/Fe2O3 nanoboxes at low-temperature. Appl. Surf. Sci. 476, 391–401 (2019)CrossRef
37.
Zurück zum Zitat S. Zhang, P. Song, J. Zhang, H.H. Yan, J. Li, Z.X. Yang, Q. Wang, Highly sensitive detection of acetone using mesoporous In2O3 nanospheres decorated with Au nanoparticles. Sens. Actuators B 242, 983–993 (2017)CrossRef S. Zhang, P. Song, J. Zhang, H.H. Yan, J. Li, Z.X. Yang, Q. Wang, Highly sensitive detection of acetone using mesoporous In2O3 nanospheres decorated with Au nanoparticles. Sens. Actuators B 242, 983–993 (2017)CrossRef
38.
Zurück zum Zitat G. Li, W. Xuan, D.W. Lee, Selectively plated stretchable liquid metal wires for transparent electronics. Sens. Actuators B 221, 1114–1119 (2015)CrossRef G. Li, W. Xuan, D.W. Lee, Selectively plated stretchable liquid metal wires for transparent electronics. Sens. Actuators B 221, 1114–1119 (2015)CrossRef
39.
Zurück zum Zitat J. Xiao, K. Diao, Z. Zheng, MOF-derived porous ZnO/Co3O4, nanocomposites for high performance acetone gas sensing. J Mater. Sci. 29, 1–12 (2018) J. Xiao, K. Diao, Z. Zheng, MOF-derived porous ZnO/Co3O4, nanocomposites for high performance acetone gas sensing. J Mater. Sci. 29, 1–12 (2018)
40.
Zurück zum Zitat A. Prakash, K.B. Sundaram, Optical and XPS studies of BCN thin films by co-sputtering of B4C and BN targets. Appl. Surf. Sci. 396, 484–491 (2017)CrossRef A. Prakash, K.B. Sundaram, Optical and XPS studies of BCN thin films by co-sputtering of B4C and BN targets. Appl. Surf. Sci. 396, 484–491 (2017)CrossRef
41.
Zurück zum Zitat A. Prakash, K.B. Sundaram, Deposition and XPS studies of dual sputtered BCN thin films. Diam. Relat. Mater. 64, 80–88 (2016)CrossRef A. Prakash, K.B. Sundaram, Deposition and XPS studies of dual sputtered BCN thin films. Diam. Relat. Mater. 64, 80–88 (2016)CrossRef
42.
Zurück zum Zitat M. Thommes, K. Kaneko, A.V. Neimark, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 38, 25 (2016) M. Thommes, K. Kaneko, A.V. Neimark, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 38, 25 (2016)
43.
Zurück zum Zitat H.H. Yan, P. Song, S. Zhang, Z.X. Yang, Q. Wang, Facile synthesis, characterization and gas sensing performance of ZnO nanoparticles-coated MoS2 nanosheets. J. Alloys Comp. 662, 118–125 (2016)CrossRef H.H. Yan, P. Song, S. Zhang, Z.X. Yang, Q. Wang, Facile synthesis, characterization and gas sensing performance of ZnO nanoparticles-coated MoS2 nanosheets. J. Alloys Comp. 662, 118–125 (2016)CrossRef
44.
Zurück zum Zitat L. Zhu, Y.Q. Li, W. Zeng, Hydrothermal synthesis of hierarchical flower-like ZnO nanostructure and its enhanced ethanol gas-sensing properties. Appl. Surf. Sci. 427, 281–287 (2018)CrossRef L. Zhu, Y.Q. Li, W. Zeng, Hydrothermal synthesis of hierarchical flower-like ZnO nanostructure and its enhanced ethanol gas-sensing properties. Appl. Surf. Sci. 427, 281–287 (2018)CrossRef
45.
Zurück zum Zitat S.V. Morozov, K.S. Novoselov, M.I. Katsnelson, Intrinsic carrier mobilities in graphene and its bilayer. Phys. Rev. Lett. 100, 016602 (2008)CrossRef S.V. Morozov, K.S. Novoselov, M.I. Katsnelson, Intrinsic carrier mobilities in graphene and its bilayer. Phys. Rev. Lett. 100, 016602 (2008)CrossRef
46.
Zurück zum Zitat J. Lu, N. Jia, L. Cheng, rGO/CoTiO3 nanocomposite with enhanced gas sensing performance at low working temperature. J. Alloy. Compd. 739, 227–234 (2018)CrossRef J. Lu, N. Jia, L. Cheng, rGO/CoTiO3 nanocomposite with enhanced gas sensing performance at low working temperature. J. Alloy. Compd. 739, 227–234 (2018)CrossRef
47.
Zurück zum Zitat L. Zhu, Y.Q. Li, W. Zeng, Enhanced ethanol sensing and mechanism of Cr-doped ZnO nanorods: experimental and computational study. Ceram. Int. 43, 14873–14879 (2017)CrossRef L. Zhu, Y.Q. Li, W. Zeng, Enhanced ethanol sensing and mechanism of Cr-doped ZnO nanorods: experimental and computational study. Ceram. Int. 43, 14873–14879 (2017)CrossRef
48.
Zurück zum Zitat N. Han, Y. Tian, X. Wu, Improving humidity selectivity in formaldehyde gas sensing by a two-sensor array made of Ga-doped ZnO. Sens. Actuators B 138, 228–235 (2009)CrossRef N. Han, Y. Tian, X. Wu, Improving humidity selectivity in formaldehyde gas sensing by a two-sensor array made of Ga-doped ZnO. Sens. Actuators B 138, 228–235 (2009)CrossRef
49.
Zurück zum Zitat Z.W. Chen, Y.Y. Hong, Z.D. Lin, Enhanced formaldehyde gas sensing properties of ZnO nanosheets modified with graphene. Electron. Mater. Lett. 13, 1–7 (2017)CrossRef Z.W. Chen, Y.Y. Hong, Z.D. Lin, Enhanced formaldehyde gas sensing properties of ZnO nanosheets modified with graphene. Electron. Mater. Lett. 13, 1–7 (2017)CrossRef
50.
Zurück zum Zitat T. Wang, B. Liu, Q. Li, Controllable construction of Cr2O3-–ZnO hierarchical heterostructures and their formaldehyde gas sensing properties. Mater. Lett. 221, 260–263 (2018)CrossRef T. Wang, B. Liu, Q. Li, Controllable construction of Cr2O3-–ZnO hierarchical heterostructures and their formaldehyde gas sensing properties. Mater. Lett. 221, 260–263 (2018)CrossRef
51.
Zurück zum Zitat S. Bai, K. Zhang, R. Luo, D. Li, A. Chen, C.C. Liu, Low-temperature hydrothermal synthesis of WO3 nanorods and their sensing properties for NO2. J. Mater. Chem. 22, 12643–12650 (2012)CrossRef S. Bai, K. Zhang, R. Luo, D. Li, A. Chen, C.C. Liu, Low-temperature hydrothermal synthesis of WO3 nanorods and their sensing properties for NO2. J. Mater. Chem. 22, 12643–12650 (2012)CrossRef
52.
Zurück zum Zitat L.L. Guo, X.Y. Kou, M.D. Ding, C. Wang, L.L. Dong, H. Zhang, C.H. Feng, Y.F. Sun, Y. Gao, P. Sun, G.Y. Lu, Reduced graphene oxide/a-Fe2O3 composite nanofibers for application in gas sensors. Sens. Actuators B 244, 233–242 (2017)CrossRef L.L. Guo, X.Y. Kou, M.D. Ding, C. Wang, L.L. Dong, H. Zhang, C.H. Feng, Y.F. Sun, Y. Gao, P. Sun, G.Y. Lu, Reduced graphene oxide/a-Fe2O3 composite nanofibers for application in gas sensors. Sens. Actuators B 244, 233–242 (2017)CrossRef
53.
Zurück zum Zitat H. Yu, T. Yang, R. Zhao, B. Xiao, Z. Li, M. Zhang, Fast formaldehyde gas sensing response properties of ultrathin SnO2 nanosheets. RSC Adv. 5, 104574–104581 (2015)CrossRef H. Yu, T. Yang, R. Zhao, B. Xiao, Z. Li, M. Zhang, Fast formaldehyde gas sensing response properties of ultrathin SnO2 nanosheets. RSC Adv. 5, 104574–104581 (2015)CrossRef
54.
Zurück zum Zitat N. Han, Y.J. Tian, X.F. Wu, Y.F. Chen, Improving humidity selectivity in formaldehyde gas sensing by a two-sensor array made of Ga-doped ZnO. Sens. Actuators B 138, 228–235 (2009)CrossRef N. Han, Y.J. Tian, X.F. Wu, Y.F. Chen, Improving humidity selectivity in formaldehyde gas sensing by a two-sensor array made of Ga-doped ZnO. Sens. Actuators B 138, 228–235 (2009)CrossRef
55.
Zurück zum Zitat Q. Xiang, G.F. Meng, Y. Zhang, J.Q. Xu, P.C. Xu, Q.Y. Pan, W.J. Yu, Ag nanoparticle embedded-ZnO nanorods synthesized via a photochemical method and its gas-sensing properties. Sens. Actuators B 143, 635–640 (2010)CrossRef Q. Xiang, G.F. Meng, Y. Zhang, J.Q. Xu, P.C. Xu, Q.Y. Pan, W.J. Yu, Ag nanoparticle embedded-ZnO nanorods synthesized via a photochemical method and its gas-sensing properties. Sens. Actuators B 143, 635–640 (2010)CrossRef
56.
Zurück zum Zitat J. Lu, N. Jia, L. Cheng, K. Liang, J. Huang, J. Li, rGO/CoTiO3 nanocomposite with enhanced gas sensing performance at low working temperature. J. Alloy. Compd. 739, 227–234 (2018)CrossRef J. Lu, N. Jia, L. Cheng, K. Liang, J. Huang, J. Li, rGO/CoTiO3 nanocomposite with enhanced gas sensing performance at low working temperature. J. Alloy. Compd. 739, 227–234 (2018)CrossRef
57.
Zurück zum Zitat Y. Chang, Y. Yao, B. Wang, Reduced graphene oxide mediated SnO2 nanocrystals for enhanced gas-sensing properties. J. Mater. Sci. Technol. 29, 157–160 (2013)CrossRef Y. Chang, Y. Yao, B. Wang, Reduced graphene oxide mediated SnO2 nanocrystals for enhanced gas-sensing properties. J. Mater. Sci. Technol. 29, 157–160 (2013)CrossRef
58.
Zurück zum Zitat C.W. Na, J.H. Kim, H.J. Kim, H.S. Woo, A. Gupta, H.K. Kim, J.H. Lee, Highly selective and sensitive detection of NO2 using rGO-In2O3 structure on flexible substrate at low temperature. Sens. Actuators B 255, 1671–1679 (2018)CrossRef C.W. Na, J.H. Kim, H.J. Kim, H.S. Woo, A. Gupta, H.K. Kim, J.H. Lee, Highly selective and sensitive detection of NO2 using rGO-In2O3 structure on flexible substrate at low temperature. Sens. Actuators B 255, 1671–1679 (2018)CrossRef
59.
Zurück zum Zitat J. Chang, X. Huang, G. Zhou, S. Cui, S. Mao, J. Chen, Three-dimensional carbon-coated Si/rGO nanostructures anchored by nickel foam with carbon nanotubes for Li-ion battery applications. Nano. Energy 15, 679–687 (2015)CrossRef J. Chang, X. Huang, G. Zhou, S. Cui, S. Mao, J. Chen, Three-dimensional carbon-coated Si/rGO nanostructures anchored by nickel foam with carbon nanotubes for Li-ion battery applications. Nano. Energy 15, 679–687 (2015)CrossRef
60.
Zurück zum Zitat A.A. Jeffery, S.R. Rao, M. Rajamathi, Preparation of MoS2–reduced graphene oxide (rGO) hybrid paper for catalytic applications by simple exfoliation–costacking. Carbon 112, 8–16 (2017)CrossRef A.A. Jeffery, S.R. Rao, M. Rajamathi, Preparation of MoS2–reduced graphene oxide (rGO) hybrid paper for catalytic applications by simple exfoliation–costacking. Carbon 112, 8–16 (2017)CrossRef
61.
Zurück zum Zitat C. Zhao, Enhanced strength in reduced graphene oxide/nickel composites prepared by molecular-level mixing for structural applications. Appl. Phys. A 118, 409–416 (2015)CrossRef C. Zhao, Enhanced strength in reduced graphene oxide/nickel composites prepared by molecular-level mixing for structural applications. Appl. Phys. A 118, 409–416 (2015)CrossRef
62.
Zurück zum Zitat Z.R. Ma, P. Song, Z.X. Yang, Q. Wang, Trimethylamine detection of 3D rGO/mesoporous In2O3 nanocomposites at room temperature. Appl. Surf. Sci. 465, 625–634 (2019)CrossRef Z.R. Ma, P. Song, Z.X. Yang, Q. Wang, Trimethylamine detection of 3D rGO/mesoporous In2O3 nanocomposites at room temperature. Appl. Surf. Sci. 465, 625–634 (2019)CrossRef
63.
Zurück zum Zitat H.J. Kim, J.H. Lee, Highly sensitive and selective gas sensors using p-type oxide semiconductors: overview. Sens. Actuators B 192, 607–627 (2014)CrossRef H.J. Kim, J.H. Lee, Highly sensitive and selective gas sensors using p-type oxide semiconductors: overview. Sens. Actuators B 192, 607–627 (2014)CrossRef
64.
Zurück zum Zitat Z. Wang, Z. Li, J. Sun, H. Zhang, W. Wang, W. Zheng, C. Wang, Improved hydrogen monitoring properties based on p-NiO/n-SnO2 heterojunction composite nanofibers. J. Phys. Chem. C 114, 6100–6105 (2010)CrossRef Z. Wang, Z. Li, J. Sun, H. Zhang, W. Wang, W. Zheng, C. Wang, Improved hydrogen monitoring properties based on p-NiO/n-SnO2 heterojunction composite nanofibers. J. Phys. Chem. C 114, 6100–6105 (2010)CrossRef
65.
Zurück zum Zitat H. Zhang, L. Yu, Q. Li, Y. Du, S.C. Ruan, Reduced graphene oxide/a-Fe2O3 hybrid nanosheets composites for room temperature NO2 sensing. Sens. Actuators B 241, 109–115 (2017)CrossRef H. Zhang, L. Yu, Q. Li, Y. Du, S.C. Ruan, Reduced graphene oxide/a-Fe2O3 hybrid nanosheets composites for room temperature NO2 sensing. Sens. Actuators B 241, 109–115 (2017)CrossRef
66.
Zurück zum Zitat S. Liu, B. Yu, H. Zhang, T. Fei, Enhancing NO2 gas sensing performances at room temperature based on reduced graphene oxide-ZnO nanoparticles hybrids. Sens. Actuators B 202, 272–278 (2014)CrossRef S. Liu, B. Yu, H. Zhang, T. Fei, Enhancing NO2 gas sensing performances at room temperature based on reduced graphene oxide-ZnO nanoparticles hybrids. Sens. Actuators B 202, 272–278 (2014)CrossRef
67.
Zurück zum Zitat R.K. Mishra, S.B. Upadhyay, A. Kushwaha, T.-H. Kim, G. Murali, R. Verma, M. Srivastava, J. Singh, P.P. Sahay, S.H. Lee, SnO2 quantum dots decorated on RGO: a superior sensitive, selective and reproducible performance for a H2 and LPG sensor. Nanoscale 7, 11971–11979 (2015)CrossRef R.K. Mishra, S.B. Upadhyay, A. Kushwaha, T.-H. Kim, G. Murali, R. Verma, M. Srivastava, J. Singh, P.P. Sahay, S.H. Lee, SnO2 quantum dots decorated on RGO: a superior sensitive, selective and reproducible performance for a H2 and LPG sensor. Nanoscale 7, 11971–11979 (2015)CrossRef
Metadaten
Titel
Reduced graphene oxide-SnO2 nanosheets hybrid nanocomposite for improvement of formaldehyde sensing properties
verfasst von
Qi Wei
Shengkai Liu
Peng Song
Zhongxi Yang
Qi Wang
Publikationsdatum
28.05.2019
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 13/2019
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-019-01579-4

Weitere Artikel der Ausgabe 13/2019

Journal of Materials Science: Materials in Electronics 13/2019 Zur Ausgabe

Neuer Inhalt