Skip to main content
Erschienen in:

31.10.2022 | Technical Article

Reduced-Order Damage Assessment Model for Dual-Phase Steels

verfasst von: Sanket Thakre, Anand K. Kanjarla

Erschienen in: Integrating Materials and Manufacturing Innovation | Ausgabe 4/2022

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We present a microstructure and work hardening sensitive reduced-order model using random forest regression for predicting damage initiation in dual-phase (DP) steels. The ductile damage behavior of banded and non-banded DP steels is evaluated for various degrees of ferrite hardening. The banded microstructures show a superior damage resistance which is further improved by ferrite hardening. A general framework to rank the severity of damage initiation in various classes using a statistical fitting procedure is introduced. The regression-based and statistical fitting-based models can successfully quantify the damage initiation and group the various classes into three major clusters. The proposed framework is a step toward developing more effective and invertible reduced-order structure–property correlations
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Rana R, Singh SB (2016) Automotive steels: design, metallurgy, processing and applications. Woodhead Publishing Rana R, Singh SB (2016) Automotive steels: design, metallurgy, processing and applications. Woodhead Publishing
2.
Zurück zum Zitat Tasan CC, Diehl M, Yan D, Bechtold M, Roters F, Schemmann L, Zheng C, Peranio N, Ponge D, Koyama M et al (2015) An overview of dual-phase steels: advances in microstructure-oriented processing and micromechanically guided design. Annu Rev Mater Res 45:391 Tasan CC, Diehl M, Yan D, Bechtold M, Roters F, Schemmann L, Zheng C, Peranio N, Ponge D, Koyama M et al (2015) An overview of dual-phase steels: advances in microstructure-oriented processing and micromechanically guided design. Annu Rev Mater Res 45:391
3.
Zurück zum Zitat Azuma M (2013) Structural control of void formation in dual phase steels. Ph.D. thesis, Denmark Azuma M (2013) Structural control of void formation in dual phase steels. Ph.D. thesis, Denmark
4.
Zurück zum Zitat Avramovic-Cingara G, Saleh CA, Jain M, Wilkinson D (2009) Void nucleation and growth in dual-phase steel 600 during uniaxial tensile testing. Metall Mater Trans A 40(13):3117 Avramovic-Cingara G, Saleh CA, Jain M, Wilkinson D (2009) Void nucleation and growth in dual-phase steel 600 during uniaxial tensile testing. Metall Mater Trans A 40(13):3117
5.
Zurück zum Zitat Erdogan M (2002) The effect of new ferrite content on the tensile fracture behaviour of dual phase steels. J Mater Sci 37(17):3623 Erdogan M (2002) The effect of new ferrite content on the tensile fracture behaviour of dual phase steels. J Mater Sci 37(17):3623
6.
Zurück zum Zitat Kadkhodapour J, Butz A, Rad SZ (2011) Mechanisms of void formation during tensile testing in a commercial, dual-phase steel. Acta Mater 59(7):2575 Kadkhodapour J, Butz A, Rad SZ (2011) Mechanisms of void formation during tensile testing in a commercial, dual-phase steel. Acta Mater 59(7):2575
7.
Zurück zum Zitat Steinbrunner DL, Matlock D, Krauss G (1988) Void formation during tensile testing of dual phase steels. Metall Trans A 19(3):579 Steinbrunner DL, Matlock D, Krauss G (1988) Void formation during tensile testing of dual phase steels. Metall Trans A 19(3):579
8.
Zurück zum Zitat Besson J (2010) Continuum models of ductile fracture: a review. Int J Damage Mech 19(1):3 Besson J (2010) Continuum models of ductile fracture: a review. Int J Damage Mech 19(1):3
9.
Zurück zum Zitat Johnson GR, Cook WH (1985) Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng Fract Mech 21(1):31 Johnson GR, Cook WH (1985) Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng Fract Mech 21(1):31
10.
Zurück zum Zitat Gurson AL (1977) Continuum theory of ductile rupture by void nucleation and growth: Part I-yield criteria and flow rules for porous ductile media. J Eng Mater Technol 99:2 Gurson AL (1977) Continuum theory of ductile rupture by void nucleation and growth: Part I-yield criteria and flow rules for porous ductile media. J Eng Mater Technol 99:2
11.
Zurück zum Zitat Tvergaard V (1981) Influence of voids on shear band instabilities under plane strain conditions. Int J Fract 17(4):389 Tvergaard V (1981) Influence of voids on shear band instabilities under plane strain conditions. Int J Fract 17(4):389
12.
Zurück zum Zitat Tvergaard V, Needleman A (1984) Analysis of the cup-cone fracture in a round tensile bar. Acta Metall 32(1):157 Tvergaard V, Needleman A (1984) Analysis of the cup-cone fracture in a round tensile bar. Acta Metall 32(1):157
13.
Zurück zum Zitat Lian J, Sharaf M, Archie F, Münstermann S (2013) A hybrid approach for modelling of plasticity and failure behaviour of advanced high-strength steel sheets. Int J Damage Mech 22(2):188 Lian J, Sharaf M, Archie F, Münstermann S (2013) A hybrid approach for modelling of plasticity and failure behaviour of advanced high-strength steel sheets. Int J Damage Mech 22(2):188
14.
Zurück zum Zitat Pütz F, Shen F, Könemann M, Münstermann S (2020) The differences of damage initiation and accumulation of dp steels: a numerical and experimental analysis. Int J Fract 226:1 Pütz F, Shen F, Könemann M, Münstermann S (2020) The differences of damage initiation and accumulation of dp steels: a numerical and experimental analysis. Int J Fract 226:1
15.
Zurück zum Zitat Rice J, Tracey D (1969) On the ductile enlargement of voids in triaxial stress fields. J Mech Phys Solids 17(3):201 Rice J, Tracey D (1969) On the ductile enlargement of voids in triaxial stress fields. J Mech Phys Solids 17(3):201
16.
Zurück zum Zitat Lemaitre J (1985) A continuous damage mechanics model for ductile fracture Lemaitre J (1985) A continuous damage mechanics model for ductile fracture
17.
Zurück zum Zitat Xue L (2007) Damage accumulation and fracture initiation in uncracked ductile solids subject to triaxial loading. Int J Solids Struct 44(16):5163 Xue L (2007) Damage accumulation and fracture initiation in uncracked ductile solids subject to triaxial loading. Int J Solids Struct 44(16):5163
18.
Zurück zum Zitat Baltic S, Magnien J, Gänser HP, Antretter T, Hammer R (2020) Coupled damage variable based on fracture locus: modelling and calibration. Int J Plast 126:102623 Baltic S, Magnien J, Gänser HP, Antretter T, Hammer R (2020) Coupled damage variable based on fracture locus: modelling and calibration. Int J Plast 126:102623
19.
Zurück zum Zitat Bao Y, Wierzbicki T (2004) On fracture locus in the equivalent strain and stress triaxiality space. Int J Mech Sci 46(1):81 Bao Y, Wierzbicki T (2004) On fracture locus in the equivalent strain and stress triaxiality space. Int J Mech Sci 46(1):81
20.
Zurück zum Zitat Toda H, Takijiri A, Azuma M, Yabu S, Hayashi K, Seo D, Kobayashi M, Hirayama K, Takeuchi A, Uesugi K (2017) Damage micromechanisms in dual-phase steel investigated with combined phase-and absorption-contrast tomography. Acta Mater 126:401 Toda H, Takijiri A, Azuma M, Yabu S, Hayashi K, Seo D, Kobayashi M, Hirayama K, Takeuchi A, Uesugi K (2017) Damage micromechanisms in dual-phase steel investigated with combined phase-and absorption-contrast tomography. Acta Mater 126:401
21.
Zurück zum Zitat Yalçinkaya T, Güngör GÖ, Çakmak SO, Tekoğlu C (2019) A micromechanics based numerical investigation of dual phase steels. Proc Struct Integr 21:61 Yalçinkaya T, Güngör GÖ, Çakmak SO, Tekoğlu C (2019) A micromechanics based numerical investigation of dual phase steels. Proc Struct Integr 21:61
22.
Zurück zum Zitat Paul SK (2013) Effect of martensite volume fraction on stress triaxiality and deformation behavior of dual phase steel. Mater Des 50:782 Paul SK (2013) Effect of martensite volume fraction on stress triaxiality and deformation behavior of dual phase steel. Mater Des 50:782
23.
Zurück zum Zitat Ayatollahi M, Darabi AC, Chamani H, Kadkhodapour J (2016) 3d micromechanical modeling of failure and damage evolution in dual phase steel based on a real 2d microstructure. Acta Mech Solida Sin 29(1):95 Ayatollahi M, Darabi AC, Chamani H, Kadkhodapour J (2016) 3d micromechanical modeling of failure and damage evolution in dual phase steel based on a real 2d microstructure. Acta Mech Solida Sin 29(1):95
24.
Zurück zum Zitat Zhu Y, Engelhardt MD (2018) Prediction of ductile fracture for metal alloys using a shear modified void growth model. Eng Fract Mech 190:491 Zhu Y, Engelhardt MD (2018) Prediction of ductile fracture for metal alloys using a shear modified void growth model. Eng Fract Mech 190:491
25.
Zurück zum Zitat de Oca Zapiain DM, Popova E, Abdeljawad F, Foulk JW, Kalidindi SR, Lim H (2018) Reduced-order microstructure-sensitive models for damage initiation in two-phase composites. Integr Mater Manuf Innov 7(3):97 de Oca Zapiain DM, Popova E, Abdeljawad F, Foulk JW, Kalidindi SR, Lim H (2018) Reduced-order microstructure-sensitive models for damage initiation in two-phase composites. Integr Mater Manuf Innov 7(3):97
26.
Zurück zum Zitat Venkatraman A, de Oca Zapiain DM, Kalidindi SR (2020) Reduced-order models for ranking damage initiation in dual-phase composites using bayesian neural networks. JOM 72(12):4359 Venkatraman A, de Oca Zapiain DM, Kalidindi SR (2020) Reduced-order models for ranking damage initiation in dual-phase composites using bayesian neural networks. JOM 72(12):4359
27.
Zurück zum Zitat Cameron B, Tasan C (2019) Microstructural damage sensitivity prediction using spatial statistics. Sci Rep 9(1):1 Cameron B, Tasan C (2019) Microstructural damage sensitivity prediction using spatial statistics. Sci Rep 9(1):1
28.
Zurück zum Zitat Kusche C, Reclik T, Freund M, Al-Samman T, Kerzel U, Korte-Kerzel S (2019) Large-area, high-resolution characterisation and classification of damage mechanisms in dual-phase steel using deep learning. PLoS ONE 14(5):e0216493 Kusche C, Reclik T, Freund M, Al-Samman T, Kerzel U, Korte-Kerzel S (2019) Large-area, high-resolution characterisation and classification of damage mechanisms in dual-phase steel using deep learning. PLoS ONE 14(5):e0216493
29.
Zurück zum Zitat Jung J, Yoon JI, Park HK, Kim JY, Kim HS (2019) Bayesian approach in predicting mechanical properties of materials: application to dual phase steels. Mater Sci Eng A 743:382 Jung J, Yoon JI, Park HK, Kim JY, Kim HS (2019) Bayesian approach in predicting mechanical properties of materials: application to dual phase steels. Mater Sci Eng A 743:382
30.
Zurück zum Zitat Chehade AA, Belgasam TM, Ayoub G, Zbib HM (2020) Accelerating the discovery of new dp steel using machine learning-based multiscale materials simulations. Metall Mater Trans A 51(6):3268 Chehade AA, Belgasam TM, Ayoub G, Zbib HM (2020) Accelerating the discovery of new dp steel using machine learning-based multiscale materials simulations. Metall Mater Trans A 51(6):3268
31.
Zurück zum Zitat Caballero FG, Garcia-Junceda A, Capdevila C, de Andres CG (2006) Evolution of microstructural banding during the manufacturing process of dual phase steels. Mater Trans 47(9):2269 Caballero FG, Garcia-Junceda A, Capdevila C, de Andres CG (2006) Evolution of microstructural banding during the manufacturing process of dual phase steels. Mater Trans 47(9):2269
32.
Zurück zum Zitat Aşık EE, Perdahcıoğlu ES, van den Boogaard T (2020) An RVE-based study of the effect of martensite banding on damage evolution in dual phase steels. Materials 13(7):1795 Aşık EE, Perdahcıoğlu ES, van den Boogaard T (2020) An RVE-based study of the effect of martensite banding on damage evolution in dual phase steels. Materials 13(7):1795
33.
Zurück zum Zitat Matsuno T, Yoshioka T, Watanabe I, Alves L (2019) Three-dimensional finite element analysis of representative volume elements for characterizing the effects of martensite elongation and banding on tensile strength of ferrite-martensite dual-phase steels. Int J Mech Sci 163:105133 Matsuno T, Yoshioka T, Watanabe I, Alves L (2019) Three-dimensional finite element analysis of representative volume elements for characterizing the effects of martensite elongation and banding on tensile strength of ferrite-martensite dual-phase steels. Int J Mech Sci 163:105133
34.
Zurück zum Zitat Paulson NH, Priddy MW, McDowell DL, Kalidindi SR (2018) Data-driven reduced-order models for rank-ordering the high cycle fatigue performance of polycrystalline microstructures. Mater Des 154:170 Paulson NH, Priddy MW, McDowell DL, Kalidindi SR (2018) Data-driven reduced-order models for rank-ordering the high cycle fatigue performance of polycrystalline microstructures. Mater Des 154:170
35.
Zurück zum Zitat Patel DK, Parthasarathy T, Przybyla C (2020) Predicting the effects of microstructure on matrix crack initiation in fiber reinforced ceramic matrix composites via machine learning. Compos Struct 236:111702 Patel DK, Parthasarathy T, Przybyla C (2020) Predicting the effects of microstructure on matrix crack initiation in fiber reinforced ceramic matrix composites via machine learning. Compos Struct 236:111702
36.
Zurück zum Zitat Hyman JD, Winter LC (2014) Stochastic generation of explicit pore structures by thresholding Gaussian random fields. J Comput Phys 277:16 Hyman JD, Winter LC (2014) Stochastic generation of explicit pore structures by thresholding Gaussian random fields. J Comput Phys 277:16
37.
Zurück zum Zitat Niezgoda SR, Kanjarla AK, Kalidindi SR (2013) Novel microstructure quantification framework for databasing, visualization, and analysis of microstructure data. Integr Mater Manuf Innov 2(1):54 Niezgoda SR, Kanjarla AK, Kalidindi SR (2013) Novel microstructure quantification framework for databasing, visualization, and analysis of microstructure data. Integr Mater Manuf Innov 2(1):54
38.
Zurück zum Zitat Thakre S, Harshith V, Kanjarla AK (2021) Intrinsic dimensionality of microstructure data. Integr Mater Manuf Innov 10(1):44 Thakre S, Harshith V, Kanjarla AK (2021) Intrinsic dimensionality of microstructure data. Integr Mater Manuf Innov 10(1):44
39.
Zurück zum Zitat Raj M, Thakre S, Annabattula RK, Kanjarla AK (2021) Estimation of local strain fields in two-phase elastic composite materials using UNET-based deep learning. Integr Mater Manuf Innov 10(3):444 Raj M, Thakre S, Annabattula RK, Kanjarla AK (2021) Estimation of local strain fields in two-phase elastic composite materials using UNET-based deep learning. Integr Mater Manuf Innov 10(3):444
40.
Zurück zum Zitat The Mathworks, Inc., Natick, Massachusetts, MATLAB version 9.5.0.1298439 (R2018b) Update 7 (2018) The Mathworks, Inc., Natick, Massachusetts, MATLAB version 9.5.0.1298439 (R2018b) Update 7 (2018)
41.
Zurück zum Zitat Niezgoda SR, Yabansu YC, Kalidindi SR (2011) Understanding and visualizing microstructure and microstructure variance as a stochastic process. Acta Mater 59(16):6387 Niezgoda SR, Yabansu YC, Kalidindi SR (2011) Understanding and visualizing microstructure and microstructure variance as a stochastic process. Acta Mater 59(16):6387
42.
Zurück zum Zitat Cecen A, Fast T, Kalidindi SR (2016) Versatile algorithms for the computation of 2-point spatial correlations in quantifying material structure. Integr Mater Manuf Innov 5(1):1 Cecen A, Fast T, Kalidindi SR (2016) Versatile algorithms for the computation of 2-point spatial correlations in quantifying material structure. Integr Mater Manuf Innov 5(1):1
43.
Zurück zum Zitat Rajan K (2013) Informatics for materials science and engineering: data-driven discovery for accelerated experimentation and application. Butterworth-Heinemann Rajan K (2013) Informatics for materials science and engineering: data-driven discovery for accelerated experimentation and application. Butterworth-Heinemann
44.
Zurück zum Zitat Kalidindi SR (2015) Data science and cyberinfrastructure: critical enablers for accelerated development of hierarchical materials. Int Mater Rev 60(3):150 Kalidindi SR (2015) Data science and cyberinfrastructure: critical enablers for accelerated development of hierarchical materials. Int Mater Rev 60(3):150
45.
Zurück zum Zitat Niezgoda S, Fullwood D, Kalidindi S (2008) Delineation of the space of 2-point correlations in a composite material system. Acta Mater 56(18):5285 Niezgoda S, Fullwood D, Kalidindi S (2008) Delineation of the space of 2-point correlations in a composite material system. Acta Mater 56(18):5285
46.
Zurück zum Zitat Cecen A, Kalidindi SR (2015) Matlab spatial correlation toolbox: Release 3:1 Cecen A, Kalidindi SR (2015) Matlab spatial correlation toolbox: Release 3:1
47.
Zurück zum Zitat Ludwik P (1909) Elemente der technologischen Mechanik. Springer, Berlin Ludwik P (1909) Elemente der technologischen Mechanik. Springer, Berlin
48.
Zurück zum Zitat Thorndike RL (1953) In: Psychometrika (Citeseer) Thorndike RL (1953) In: Psychometrika (Citeseer)
49.
Zurück zum Zitat Salvador S, Chan P (2004) In: 16th IEEE international conference on tools with artificial intelligence (IEEE), pp 576–584 Salvador S, Chan P (2004) In: 16th IEEE international conference on tools with artificial intelligence (IEEE), pp 576–584
50.
Zurück zum Zitat Xie F, Xu Y (2019) An efficient regularized k-nearest neighbor structural twin support vector machine. Appl Intell 49(12):4258 Xie F, Xu Y (2019) An efficient regularized k-nearest neighbor structural twin support vector machine. Appl Intell 49(12):4258
51.
Zurück zum Zitat Satopaa V, Albrecht J, Irwin D, Raghavan B (2011) In: 2011 31st international conference on distributed computing systems workshops. IEEE, pp 166–171 Satopaa V, Albrecht J, Irwin D, Raghavan B (2011) In: 2011 31st international conference on distributed computing systems workshops. IEEE, pp 166–171
52.
Zurück zum Zitat Mansbach RA, Ferguson AL (2015) Machine learning of single molecule free energy surfaces and the impact of chemistry and environment upon structure and dynamics. J Chem Phys 142(10):03B607 Mansbach RA, Ferguson AL (2015) Machine learning of single molecule free energy surfaces and the impact of chemistry and environment upon structure and dynamics. J Chem Phys 142(10):03B607
53.
Zurück zum Zitat Ferguson AL (2017) Machine learning and data science in soft materials engineering. J Phys Condens Matter 30(4):043002 Ferguson AL (2017) Machine learning and data science in soft materials engineering. J Phys Condens Matter 30(4):043002
54.
Zurück zum Zitat Fermín-Cueto P, McTurk E, Allerhand M, Medina-Lopez E, Anjos MF, Sylvester J, Dos Reis G (2020) Identification and machine learning prediction of knee-point and knee-onset in capacity degradation curves of lithium-ion cells. Energy AI 1:100006 Fermín-Cueto P, McTurk E, Allerhand M, Medina-Lopez E, Anjos MF, Sylvester J, Dos Reis G (2020) Identification and machine learning prediction of knee-point and knee-onset in capacity degradation curves of lithium-ion cells. Energy AI 1:100006
55.
Zurück zum Zitat Ho TK (1995) In: Proceedings of 3rd international conference on document analysis and recognition, vol 1. IEEE, pp 278–282 Ho TK (1995) In: Proceedings of 3rd international conference on document analysis and recognition, vol 1. IEEE, pp 278–282
56.
Zurück zum Zitat Breiman L (2001) Random forests. Mach Learn 45(1):5 Breiman L (2001) Random forests. Mach Learn 45(1):5
57.
Zurück zum Zitat Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V et al (2011) Scikit-learn: machine learning in python. J Mach Learn Res 12:2825 Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V et al (2011) Scikit-learn: machine learning in python. J Mach Learn Res 12:2825
58.
Zurück zum Zitat Agrawal A, Choudhary A (2018) An online tool for predicting fatigue strength of steel alloys based on ensemble data mining. Int J Fatigue 113:389 Agrawal A, Choudhary A (2018) An online tool for predicting fatigue strength of steel alloys based on ensemble data mining. Int J Fatigue 113:389
59.
Zurück zum Zitat Wang J, Fa Y, Tian Y, Yu X (2021) A machine-learning approach to predict creep properties of Cr–Mo steel with time-temperature parameters. J Market Res 13:635 Wang J, Fa Y, Tian Y, Yu X (2021) A machine-learning approach to predict creep properties of Cr–Mo steel with time-temperature parameters. J Market Res 13:635
60.
Zurück zum Zitat Wu S, Ren J, Zhou X, Cao G, Liu Z, Yang J (2019) Comparisons of different data-driven modeling techniques for predicting tensile strength of x70 pipeline steels. Trans Indian Inst Met 72(5):1277 Wu S, Ren J, Zhou X, Cao G, Liu Z, Yang J (2019) Comparisons of different data-driven modeling techniques for predicting tensile strength of x70 pipeline steels. Trans Indian Inst Met 72(5):1277
61.
Zurück zum Zitat Zhi Y, Fu D, Zhang D, Yang T, Li X (2019) Prediction and knowledge mining of outdoor atmospheric corrosion rates of low alloy steels based on the random forests approach. Metals 9(3):383 Zhi Y, Fu D, Zhang D, Yang T, Li X (2019) Prediction and knowledge mining of outdoor atmospheric corrosion rates of low alloy steels based on the random forests approach. Metals 9(3):383
62.
Zurück zum Zitat Ruan F, Qi J, Yan C, Tang H, Zhang T, Li H (2017) Quantitative detection of harmful elements in alloy steel by libs technique and sequential backward selection-random forest (SBS-RF). J Anal At Spectrom 32(11):2194 Ruan F, Qi J, Yan C, Tang H, Zhang T, Li H (2017) Quantitative detection of harmful elements in alloy steel by libs technique and sequential backward selection-random forest (SBS-RF). J Anal At Spectrom 32(11):2194
63.
Zurück zum Zitat Torrisi SB, Carbone MR, Rohr BA, Montoya JH, Ha Y, Yano J, Suram SK, Hung L (2020) Random forest machine learning models for interpretable x-ray absorption near-edge structure spectrum–property relationships. npj Comput Mater 6(1):1 Torrisi SB, Carbone MR, Rohr BA, Montoya JH, Ha Y, Yano J, Suram SK, Hung L (2020) Random forest machine learning models for interpretable x-ray absorption near-edge structure spectrum–property relationships. npj Comput Mater 6(1):1
64.
Zurück zum Zitat Yuan M, Paradiso S, Meredig B, Niezgoda SR (2018) Machine learning-based reduce order crystal plasticity modeling for ICME applications. Integr Mater Manuf Innov 7(4):214 Yuan M, Paradiso S, Meredig B, Niezgoda SR (2018) Machine learning-based reduce order crystal plasticity modeling for ICME applications. Integr Mater Manuf Innov 7(4):214
65.
Zurück zum Zitat Kopper A, Karkare R, Paffenroth RC, Apelian D (2020) Model selection and evaluation for machine learning: deep learning in materials processing. Integr Mater Manuf Innov 9(3):287 Kopper A, Karkare R, Paffenroth RC, Apelian D (2020) Model selection and evaluation for machine learning: deep learning in materials processing. Integr Mater Manuf Innov 9(3):287
66.
Zurück zum Zitat Cai J, Chu X, Xu K, Li H, Wei J (2020) Machine learning-driven new material discovery. Nanoscale Adv 2(8):3115 Cai J, Chu X, Xu K, Li H, Wei J (2020) Machine learning-driven new material discovery. Nanoscale Adv 2(8):3115
67.
Zurück zum Zitat Browne MW (2000) Cross-validation methods. J Math Psychol 44(1):108 Browne MW (2000) Cross-validation methods. J Math Psychol 44(1):108
68.
Zurück zum Zitat Lehmann EL, Casella G (2006) Theory of point estimation. Springer Lehmann EL, Casella G (2006) Theory of point estimation. Springer
69.
Zurück zum Zitat Woody MS, Lewis JH, Greenberg MJ, Goldman YE, Ostap EM (2016) Memlet: an easy-to-use tool for data fitting and model comparison using maximum-likelihood estimation. Biophys J 111(2):273 Woody MS, Lewis JH, Greenberg MJ, Goldman YE, Ostap EM (2016) Memlet: an easy-to-use tool for data fitting and model comparison using maximum-likelihood estimation. Biophys J 111(2):273
70.
Zurück zum Zitat Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19(6):716 Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19(6):716
71.
Zurück zum Zitat Ahsanullah M (2016) Extreme value distributions. Springer, pp 73–91 Ahsanullah M (2016) Extreme value distributions. Springer, pp 73–91
72.
Zurück zum Zitat Bali TG (2003) The generalized extreme value distribution. Econ Lett 79(3):423 Bali TG (2003) The generalized extreme value distribution. Econ Lett 79(3):423
74.
Zurück zum Zitat Biau G, Scornet E (2016) A random forest guided tour. TEST 25(2):197 Biau G, Scornet E (2016) A random forest guided tour. TEST 25(2):197
Metadaten
Titel
Reduced-Order Damage Assessment Model for Dual-Phase Steels
verfasst von
Sanket Thakre
Anand K. Kanjarla
Publikationsdatum
31.10.2022
Verlag
Springer International Publishing
Erschienen in
Integrating Materials and Manufacturing Innovation / Ausgabe 4/2022
Print ISSN: 2193-9764
Elektronische ISSN: 2193-9772
DOI
https://doi.org/10.1007/s40192-022-00282-3

Weitere Artikel der Ausgabe 4/2022

Integrating Materials and Manufacturing Innovation 4/2022 Zur Ausgabe

Thematic Section: First World Congress on Artificial Intelligence in Materials & Manufacturing 2022

Compound Knowledge Graph-Enabled AI Assistant for Accelerated Materials Discovery

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.