Skip to main content

2021 | OriginalPaper | Buchkapitel

Reduced Products of Abstract Domains for Fairness Certification of Neural Networks

verfasst von : Denis Mazzucato, Caterina Urban

Erschienen in: Static Analysis

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We present Libra, an open-source abstract interpretation-based static analyzer for certifying fairness of ReLU neural network classifiers for tabular data. Libra combines a sound forward pre-analysis with an exact backward analysis that leverages the polyhedra abstract domain to provide definite fairness guarantees when possible, and to otherwise quantify and describe the biased input space regions. The analysis is configurable in terms of scalability and precision. We equipped Libra with new abstract domains to use in the pre-analysis, including a generic reduced product domain construction, as well as search heuristics to find the best analysis configuration. We additionally set up the backward analysis to allow further parallelization. Our experimental evaluation demonstrates the effectiveness of the approach on neural networks trained on a popular dataset in the fairness literature.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
2
For simplicity, we ignore ties as they can always be broken arbitrarily.
 
3
This is solely for technical reasons as the serialization of abstract domain elements is not available for the polyhedra domain implementation that Libra relies on. We plan to address this shortcoming as part of our future work.
 
Literatur
3.
Zurück zum Zitat Buolamwini, J., Gebru, T.: Gender shades: Intersectional accuracy disparities in commercial gender classification. In: FAT, vol. 81, pp. 77–91. PMLR (2018) Buolamwini, J., Gebru, T.: Gender shades: Intersectional accuracy disparities in commercial gender classification. In: FAT, vol. 81, pp. 77–91. PMLR (2018)
4.
Zurück zum Zitat Cousot, P., Cousot, R.: Static determination of dynamic properties of programs. In: Second International Symposium on Programming, pp. 106–130 (1976) Cousot, P., Cousot, R.: Static determination of dynamic properties of programs. In: Second International Symposium on Programming, pp. 106–130 (1976)
9.
Zurück zum Zitat Dwork, C., Hardt, M., Pitassi, T., Reingold, O., Zemel, R.S.: Fairness through awareness. In: ITCS, pp. 214–226. ACM (2012) Dwork, C., Hardt, M., Pitassi, T., Reingold, O., Zemel, R.S.: Fairness through awareness. In: ITCS, pp. 214–226. ACM (2012)
13.
Zurück zum Zitat Hickey, T.J., Ju, Q., van Emden, M.H.: Interval arithmetic: from principles to implementation. J. ACM 48(5), 1038–1068 (2001)MathSciNetCrossRef Hickey, T.J., Ju, Q., van Emden, M.H.: Interval arithmetic: from principles to implementation. J. ACM 48(5), 1038–1068 (2001)MathSciNetCrossRef
16.
Zurück zum Zitat Kay, M., Matuszek, C., Munson, S.A.: Unequal representation and gender stereotypes in image search results for occupations. In: CHI, pp. 3819–3828. ACM (2015) Kay, M., Matuszek, C., Munson, S.A.: Unequal representation and gender stereotypes in image search results for occupations. In: CHI, pp. 3819–3828. ACM (2015)
19.
Zurück zum Zitat Manisha, P., Gujar, S.: FNNC: achieving fairness through neural networks. In: IJCAI, pp. 2277–2283 (2020) Manisha, P., Gujar, S.: FNNC: achieving fairness through neural networks. In: IJCAI, pp. 2277–2283 (2020)
21.
Zurück zum Zitat Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: ICML, pp. 807–814 (2010) Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: ICML, pp. 807–814 (2010)
23.
Zurück zum Zitat Obermeyer, Z., Powers, B., Vogeli, C., Mullainathan, S.: Dissecting racial bias in an algorithm used to manage the health of populations. Science 366, 447–453 (2019)CrossRef Obermeyer, Z., Powers, B., Vogeli, C., Mullainathan, S.: Dissecting racial bias in an algorithm used to manage the health of populations. Science 366, 447–453 (2019)CrossRef
26.
Zurück zum Zitat Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Efficient formal safety analysis of neural networks. In: NeurIPS 2018, pp. 6369–6379 (2018) Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Efficient formal safety analysis of neural networks. In: NeurIPS 2018, pp. 6369–6379 (2018)
27.
Zurück zum Zitat Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Formal security analysis of neural networks using symbolic intervals. In: Security, pp. 1599–1614. USENIX (2018) Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Formal security analysis of neural networks using symbolic intervals. In: Security, pp. 1599–1614. USENIX (2018)
28.
Zurück zum Zitat Yurochkin, M., Bower, A., Sun, Y.: Training individually fair ml models with sensitive subspace robustness. In: ICLR (2020) Yurochkin, M., Bower, A., Sun, Y.: Training individually fair ml models with sensitive subspace robustness. In: ICLR (2020)
Metadaten
Titel
Reduced Products of Abstract Domains for Fairness Certification of Neural Networks
verfasst von
Denis Mazzucato
Caterina Urban
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-88806-0_15