Skip to main content

2017 | OriginalPaper | Buchkapitel

Reducing Losses in Magnetic Thin Films Through Nanoscale Surface Patterning

verfasst von : Goran Rasic, Branislav Vlahovic, Justin Schwartz

Erschienen in: Proceedings of the IV Advanced Ceramics and Applications Conference

Verlag: Atlantis Press

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Biaxially textured nickel ferrite (NFO) thin films were grown by chemical solution deposition on c-plane sapphire substrates. Crystal structure and chemical composition was evaluated using X-ray Diffraction (XRD). Nanoimprint lithography (NIL) technique using a polydimethylsiloxane (PDMS) stamp was used imprint the films. A method for large scale precise patterning of was demonstrated. Quality of the transferred pattern was evaluated using atomic force (AFM) and transmission electron microscopies (TEM). Magnetic measurements were performed using superconducting quantum interference device (SQUID) and showed large decrease of coercivity in patterned samples. Probable causes for coercivity reduction have been investigated and surface patterning has been shown to be the direct cause of the coercivity reduction phenomena. Coercivity reduction has been shown to translate to thicker films with layer-by-layer manufacturing method yielding better results. The effect of changing the surface pattern on the topography, crystallography and magnetic properties was investigated and different trends were observed for the measurements done with the magnetic field parallel and perpendicular to the film surface. In all cases, the coercivity was reduced relative to the planar (nonpatterned) films and relative to the base layer onto which the patterned film was deposited. All films showed a similar magnetic response as indicated by similarities in the curve shape. Crystallography measurements showed the imprint process did not affect the grain growth and orientation regardless of the surface feature size as indicated by all films having virtually identical diffraction patterns. The lower limit of surface patterning here was shown to be around 500 nm. Below 750 nm, the pattern quality degraded and the feature height reduced. The domain configurations of the planar and patterned films were investigated. Deviation from the expected domain configuration was found in the patterned films. The origin of the observed domain structure and coercivity reduction has been shown to be the surface topography induced change in the minimum energy configuration of the sample. This results in the minimization of the total sample magnetization through formation of stripe domains.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat B.D. Cullity, C.D. Graham, Introduction to magnetic materials, 2nd edn. (IEEE/Wiley, Hoboken, NJ, 2009) B.D. Cullity, C.D. Graham, Introduction to magnetic materials, 2nd edn. (IEEE/Wiley, Hoboken, NJ, 2009)
2.
Zurück zum Zitat H. Kronmüller, S.S.P. Parkin, Handbook of magnetism and advanced magnetic materials (Wiley, Hoboken, NJ, 2007)CrossRef H. Kronmüller, S.S.P. Parkin, Handbook of magnetism and advanced magnetic materials (Wiley, Hoboken, NJ, 2007)CrossRef
3.
Zurück zum Zitat N.A. Spaldin, Magnetic materials: fundamentals and applications, 2nd edn. (Cambridge University Press, Cambridge, New York, 2011) N.A. Spaldin, Magnetic materials: fundamentals and applications, 2nd edn. (Cambridge University Press, Cambridge, New York, 2011)
4.
Zurück zum Zitat J.D. Adam, S.V. Krishnaswamy, S.H. Talisa, K.C. Yoo, Thin-Film Ferrites for Microwave and Millimeter-Wave Applications. J. Magn. Magn. Mater. 83, 419–424 (1990)CrossRef J.D. Adam, S.V. Krishnaswamy, S.H. Talisa, K.C. Yoo, Thin-Film Ferrites for Microwave and Millimeter-Wave Applications. J. Magn. Magn. Mater. 83, 419–424 (1990)CrossRef
5.
Zurück zum Zitat E. Otsuki, S. Yamada, T. Otsuka, K. Shoji, T. Sato, Microstructure and physical properties of Mn-Zn ferrites for high-frequency power supplies. J. Appl. Phys. 69, 5942–5944 (1991)CrossRef E. Otsuki, S. Yamada, T. Otsuka, K. Shoji, T. Sato, Microstructure and physical properties of Mn-Zn ferrites for high-frequency power supplies. J. Appl. Phys. 69, 5942–5944 (1991)CrossRef
6.
Zurück zum Zitat J. Smit, H.P.J. Wijn, G.E. Luton, Ferrites: physical properties of ferrimagnetic oxides in relation to their technical applications. [S.l.: s.n.] (Wiley, USA, 1959) J. Smit, H.P.J. Wijn, G.E. Luton, Ferrites: physical properties of ferrimagnetic oxides in relation to their technical applications. [S.l.: s.n.] (Wiley, USA, 1959)
7.
Zurück zum Zitat U. Luders, A. Barthelemy, M. Bibes, K. Bouzehouane, S. Fusil, E. Jacquet, et al., NiFe2O4: A versatile spinel material brings new opportunities for spintronics. Adv. Mat. 18, 1733–1736 (2006) U. Luders, A. Barthelemy, M. Bibes, K. Bouzehouane, S. Fusil, E. Jacquet, et al., NiFe2O4: A versatile spinel material brings new opportunities for spintronics. Adv. Mat. 18, 1733–1736 (2006)
8.
Zurück zum Zitat G. Dixit, J.P. Singh, R.C. Srivastava, H.M. Agrawal, R.J. Choudhary, A. Gupta, Structural and magnetic behaviour of NiFe2O4 thin film grown by pulsed laser deposition. Indian J. Pure Appl. Phys. 48, 287–291 (2010) G. Dixit, J.P. Singh, R.C. Srivastava, H.M. Agrawal, R.J. Choudhary, A. Gupta, Structural and magnetic behaviour of NiFe2O4 thin film grown by pulsed laser deposition. Indian J. Pure Appl. Phys. 48, 287–291 (2010)
9.
Zurück zum Zitat R.C. Rai, S. Wilser, M. Guminiak, B. Cai, M.L. Nakarmi, Optical and electronic properties of NiFe2O4 and CoFe2O4 thin films. Appl. Phys. A-Mat. Sci. Process 106, 207–211 (2012)CrossRef R.C. Rai, S. Wilser, M. Guminiak, B. Cai, M.L. Nakarmi, Optical and electronic properties of NiFe2O4 and CoFe2O4 thin films. Appl. Phys. A-Mat. Sci. Process 106, 207–211 (2012)CrossRef
10.
Zurück zum Zitat M. Srivastava, A.K. Ojha, S. Chaubey, A. Materny, Synthesis and optical characterization of nanocrystalline NiFe2O4 structures. J. Alloy. Compd. 481, 515–519 (2009)CrossRef M. Srivastava, A.K. Ojha, S. Chaubey, A. Materny, Synthesis and optical characterization of nanocrystalline NiFe2O4 structures. J. Alloy. Compd. 481, 515–519 (2009)CrossRef
11.
Zurück zum Zitat M.G. Chapline, S.X. Wang, Spin filter based tunnel junctions. J. Appl. Phys. 100 (2006) M.G. Chapline, S.X. Wang, Spin filter based tunnel junctions. J. Appl. Phys. 100 (2006)
12.
Zurück zum Zitat P. Zhao, Z.L. Zhao, D. Hunter, R. Suchoski, C. Gao, S. Mathews, et al., Fabrication and characterization of all-thin-film magnetoelectric sensors. Appl. Phys. Lett. 94 (2009) P. Zhao, Z.L. Zhao, D. Hunter, R. Suchoski, C. Gao, S. Mathews, et al., Fabrication and characterization of all-thin-film magnetoelectric sensors. Appl. Phys. Lett. 94 (2009)
13.
Zurück zum Zitat S.Y. Chou, Patterned magnetic nanostructures and quantized magnetic disks. Proc. IEEE 85, 652–671 (1997)CrossRef S.Y. Chou, Patterned magnetic nanostructures and quantized magnetic disks. Proc. IEEE 85, 652–671 (1997)CrossRef
14.
Zurück zum Zitat C.A. Ross, S. Haratani, F.J. Castano, Y. Hao, M. Hwang, M. Shima et al., Magnetic behavior of lithographically patterned particle arrays (invited). J. Appl. Phys. 91, 6848–6853 (2002)CrossRef C.A. Ross, S. Haratani, F.J. Castano, Y. Hao, M. Hwang, M. Shima et al., Magnetic behavior of lithographically patterned particle arrays (invited). J. Appl. Phys. 91, 6848–6853 (2002)CrossRef
15.
Zurück zum Zitat M. Fiebig, Revival of the magnetoelectric effect. J. Phys. D-Appl. Phys. 38, R123–R152 (2005)CrossRef M. Fiebig, Revival of the magnetoelectric effect. J. Phys. D-Appl. Phys. 38, R123–R152 (2005)CrossRef
16.
Zurück zum Zitat L.Z. Lin, Y.W. Li, A.K. Soh, F.X. Li, A pencil-like magnetoelectric sensor exhibiting ultrahigh coupling properties. J. Appl. Phys. 113 (2013) L.Z. Lin, Y.W. Li, A.K. Soh, F.X. Li, A pencil-like magnetoelectric sensor exhibiting ultrahigh coupling properties. J. Appl. Phys. 113 (2013)
17.
Zurück zum Zitat C.N. Chinnasamy, S.D. Yoon, A. Yang, A. Baraskar, C. Vittoria, V.G. Harris, Effect of growth temperature on the magnetic, microwave, and cation inversion properties on NiFe2O4 thin films deposited by pulsed laser ablation deposition. J. Appl. Phys. 101 (2007) C.N. Chinnasamy, S.D. Yoon, A. Yang, A. Baraskar, C. Vittoria, V.G. Harris, Effect of growth temperature on the magnetic, microwave, and cation inversion properties on NiFe2O4 thin films deposited by pulsed laser ablation deposition. J. Appl. Phys. 101 (2007)
18.
Zurück zum Zitat G.H. Jaffari, A.K. Rumaiz, J.C. Woicik, S.I. Shah, Influence of oxygen vacancies on the electronic structure and magnetic properties of NiFe2O4 thin films. J. Appl. Phys. 111 (2012) G.H. Jaffari, A.K. Rumaiz, J.C. Woicik, S.I. Shah, Influence of oxygen vacancies on the electronic structure and magnetic properties of NiFe2O4 thin films. J. Appl. Phys. 111 (2012)
19.
Zurück zum Zitat C.M. Williams, D.B. Chrisey, P. Lubitz, K.S. Grabowski, C.M. Cotell, The magnetic and structural-properties of pulsed-laser deposited epitaxial MnZn-ferrite films. J. Appl. Phys. 75, 1676–1680 (1994)CrossRef C.M. Williams, D.B. Chrisey, P. Lubitz, K.S. Grabowski, C.M. Cotell, The magnetic and structural-properties of pulsed-laser deposited epitaxial MnZn-ferrite films. J. Appl. Phys. 75, 1676–1680 (1994)CrossRef
20.
Zurück zum Zitat R. Datta, S. Kanuri, S.V. Karthik, D. Mazumdar, J.X. Ma, A. Gupta, Formation of antiphase domains in NiFe2O4 thin films deposited on different substrates, Appl. Phys. Lett. 97 (2010) R. Datta, S. Kanuri, S.V. Karthik, D. Mazumdar, J.X. Ma, A. Gupta, Formation of antiphase domains in NiFe2O4 thin films deposited on different substrates, Appl. Phys. Lett. 97 (2010)
21.
Zurück zum Zitat P. Samarasekara, R. Rani, F.J. Cadieu, S.A. Shaheen, Variable texture NiO/Fe2O3 ferrite films prepared by pulsed laser deposition. J. Appl. Phys. 79, 5425–5427 (1996)CrossRef P. Samarasekara, R. Rani, F.J. Cadieu, S.A. Shaheen, Variable texture NiO/Fe2O3 ferrite films prepared by pulsed laser deposition. J. Appl. Phys. 79, 5425–5427 (1996)CrossRef
22.
Zurück zum Zitat J.H. Park, Y.K. Jeong, S. Ryu, J.Y. Son, H.M. Jang, Electric-field-control of magnetic remanence of NiFe2O4 thin film epitaxially grown on Pb(Mg1/3Nb2/3)O-3-PbTiO3. Appl. Phys. Lett. 96 (2010) J.H. Park, Y.K. Jeong, S. Ryu, J.Y. Son, H.M. Jang, Electric-field-control of magnetic remanence of NiFe2O4 thin film epitaxially grown on Pb(Mg1/3Nb2/3)O-3-PbTiO3. Appl. Phys. Lett. 96 (2010)
23.
Zurück zum Zitat M.T. Johnson, P.G. Kotula, C.B. Carter, Growth of nickel ferrite thin films using pulsed-laser deposition. J. Cryst. Growth 206, 299–307 (1999)CrossRef M.T. Johnson, P.G. Kotula, C.B. Carter, Growth of nickel ferrite thin films using pulsed-laser deposition. J. Cryst. Growth 206, 299–307 (1999)CrossRef
24.
Zurück zum Zitat F. Rigato, S. Estrade, J. Arbiol, F. Peiro, U. Luders, X. Marti et al., Strain-induced stabilization of new magnetic spinel structures in epitaxial oxide heterostructures. Mat. Sci. Eng. B-Solid State Mat. Adv. Technol. 144, 43–48 (2007)CrossRef F. Rigato, S. Estrade, J. Arbiol, F. Peiro, U. Luders, X. Marti et al., Strain-induced stabilization of new magnetic spinel structures in epitaxial oxide heterostructures. Mat. Sci. Eng. B-Solid State Mat. Adv. Technol. 144, 43–48 (2007)CrossRef
25.
Zurück zum Zitat S. Venzke, R.B. van Dover, J.M. Phillips, E.M. Gyory, T. Siegrist, C.H. Chen, et al., Epitaxial growth and magnetic behavior of NiFe2O4 thin films. J. Mat. Res. 11, 1187–1198 (1996) S. Venzke, R.B. van Dover, J.M. Phillips, E.M. Gyory, T. Siegrist, C.H. Chen, et al., Epitaxial growth and magnetic behavior of NiFe2O4 thin films. J. Mat. Res. 11, 1187–1198 (1996)
26.
Zurück zum Zitat R. Datta, B. Loukya, N. Li, A. Gupta, Structural features of epitaxial NiFe2O4 thin films grown on different substrates by direct liquid injection chemical vapor deposition. J. Cryst. Growth 345, 44–50 (2012)CrossRef R. Datta, B. Loukya, N. Li, A. Gupta, Structural features of epitaxial NiFe2O4 thin films grown on different substrates by direct liquid injection chemical vapor deposition. J. Cryst. Growth 345, 44–50 (2012)CrossRef
27.
Zurück zum Zitat N. Li, Y.H.A. Wang, M.N. Iliev, T.M. Klein, A. Gupta, Growth of atomically smooth epitaxial nickel ferrite films by direct liquid injection CVD. Chem. Vap. Deposition 17, 261–269 (2011)CrossRef N. Li, Y.H.A. Wang, M.N. Iliev, T.M. Klein, A. Gupta, Growth of atomically smooth epitaxial nickel ferrite films by direct liquid injection CVD. Chem. Vap. Deposition 17, 261–269 (2011)CrossRef
28.
Zurück zum Zitat A.G. Fitzgerald, An investigation of the growth of nickel ferrite films on magnesium-oxide substrates. J. Mat. Sci. 22, 1887–1893 (1987)CrossRef A.G. Fitzgerald, An investigation of the growth of nickel ferrite films on magnesium-oxide substrates. J. Mat. Sci. 22, 1887–1893 (1987)CrossRef
29.
Zurück zum Zitat D.M. Lind, S.D. Berry, G. Chern, H. Mathias, L.R. Testardi, Characterization of the structural and magnetic-ordering of Fe3O4/NiO superlattices grown by oxygen-plasma-assisted molecular-beam epitaxy. J. Appl. Phys. 70, 6218–6220 (1991)CrossRef D.M. Lind, S.D. Berry, G. Chern, H. Mathias, L.R. Testardi, Characterization of the structural and magnetic-ordering of Fe3O4/NiO superlattices grown by oxygen-plasma-assisted molecular-beam epitaxy. J. Appl. Phys. 70, 6218–6220 (1991)CrossRef
30.
Zurück zum Zitat R.J. Kennedy, Growth of epitaxial films of iron oxide, nickel oxide, cobalt oxide, strontium hexagonal ferrite, and yttrium iron garnet by laser ablation. J. Appl. Phys. 79, 4570 (1996)CrossRef R.J. Kennedy, Growth of epitaxial films of iron oxide, nickel oxide, cobalt oxide, strontium hexagonal ferrite, and yttrium iron garnet by laser ablation. J. Appl. Phys. 79, 4570 (1996)CrossRef
31.
Zurück zum Zitat G.F. Qiao, Y. Hong, G.P. Song, Potential sensor based on electrochemical NiFe2O4 film prepared by EB-PVD. IEEE Sens. J. 12, 2664–2665 (2012)CrossRef G.F. Qiao, Y. Hong, G.P. Song, Potential sensor based on electrochemical NiFe2O4 film prepared by EB-PVD. IEEE Sens. J. 12, 2664–2665 (2012)CrossRef
32.
Zurück zum Zitat S. Seifikar, B. Calandro, E. Deeb, E. Sachet, J.J. Yang, J.P. Maria, et al., Structural and magnetic properties of biaxially textured NiFe2O4 thin films grown on c-plane sapphire. J. Appl. Phys. 112 (2012) S. Seifikar, B. Calandro, E. Deeb, E. Sachet, J.J. Yang, J.P. Maria, et al., Structural and magnetic properties of biaxially textured NiFe2O4 thin films grown on c-plane sapphire. J. Appl. Phys. 112 (2012)
33.
Zurück zum Zitat S. Seifikar, B. Calandro, G. Rasic, E. Deeb, J. Yang, N. Bassiri-Gharb et al., Optimized growth of heteroepitaxial (111) NiFe2O4 thin films on (0001) sapphire with two in-plane variants via chemical solution deposition. J. Am. Ceram. Soc. 96, 3050–3053 (2013) S. Seifikar, B. Calandro, G. Rasic, E. Deeb, J. Yang, N. Bassiri-Gharb et al., Optimized growth of heteroepitaxial (111) NiFe2O4 thin films on (0001) sapphire with two in-plane variants via chemical solution deposition. J. Am. Ceram. Soc. 96, 3050–3053 (2013)
34.
Zurück zum Zitat S. Seifikar, A. Tabei, E. Sachet, T. Rawdanowicz, N. Bassiri-Gharb, J. Schwartz, Growth of (111) oriented NiFe2O4 polycrystalline thin films on Pt(111) via sol-gel processing. J. Appl. Phys. 112 (2012) S. Seifikar, A. Tabei, E. Sachet, T. Rawdanowicz, N. Bassiri-Gharb, J. Schwartz, Growth of (111) oriented NiFe2O4 polycrystalline thin films on Pt(111) via sol-gel processing. J. Appl. Phys. 112 (2012)
35.
Zurück zum Zitat Y.N. Xia, G.M. Whitesides, Soft lithography. Angewandte Chemie-International Edition 37, 551–575 (1998)CrossRef Y.N. Xia, G.M. Whitesides, Soft lithography. Angewandte Chemie-International Edition 37, 551–575 (1998)CrossRef
36.
Zurück zum Zitat L.J. Guo, Nanoimprint lithography: methods and material requirements. Adv. Mater. 19, 495–513 (2007)CrossRef L.J. Guo, Nanoimprint lithography: methods and material requirements. Adv. Mater. 19, 495–513 (2007)CrossRef
37.
Zurück zum Zitat O.F. Gobel, M. Nedelcu, U. Steiner, Soft lithography of ceramic patterns. Adv. Funct. Mater. 17, 1131–1136 (2007)CrossRef O.F. Gobel, M. Nedelcu, U. Steiner, Soft lithography of ceramic patterns. Adv. Funct. Mater. 17, 1131–1136 (2007)CrossRef
38.
Zurück zum Zitat C. Peroz, V. Chauveau, E. Barthel, E. Sondergard, Nanoimprint lithography on silica sol-gels: a simple route to sequential patterning. Adv. Mat. 21, 555–558 (2009) C. Peroz, V. Chauveau, E. Barthel, E. Sondergard, Nanoimprint lithography on silica sol-gels: a simple route to sequential patterning. Adv. Mat. 21, 555–558 (2009)
39.
Zurück zum Zitat S.S. Dinachali, M.S.M. Saifullah, R. Ganesan, E.S. Thian, C.B. He, A universal scheme for patterning of oxides via thermal nanoimprint lithography. Adv. Funct. Mater. 23, 2201–2211 (2013)CrossRef S.S. Dinachali, M.S.M. Saifullah, R. Ganesan, E.S. Thian, C.B. He, A universal scheme for patterning of oxides via thermal nanoimprint lithography. Adv. Funct. Mater. 23, 2201–2211 (2013)CrossRef
40.
Zurück zum Zitat T. Higashiki, T. Nakasugi, I. Yoneda, Nanoimprint lithography for semiconductor devices and future patterning innovation. Altern. Lithogr. Technolo. Iii, 7970 (2011) T. Higashiki, T. Nakasugi, I. Yoneda, Nanoimprint lithography for semiconductor devices and future patterning innovation. Altern. Lithogr. Technolo. Iii, 7970 (2011)
41.
Zurück zum Zitat M. Malloy, L.C. Litt, Step and flash imprint lithography for semiconductor high volume manufacturing. J. Photopolym. Sci. Technol. 23, 749–756 (2010)CrossRef M. Malloy, L.C. Litt, Step and flash imprint lithography for semiconductor high volume manufacturing. J. Photopolym. Sci. Technol. 23, 749–756 (2010)CrossRef
42.
Zurück zum Zitat D. Cheyns, K. Vasseur, C. Rolin, J. Genoe, J. Poortmans, P. Heremans, Nanoimprinted semiconducting polymer films with 50 nm features and their application to organic heterojunction solar cells. Nanotechnology, 19 (2008) D. Cheyns, K. Vasseur, C. Rolin, J. Genoe, J. Poortmans, P. Heremans, Nanoimprinted semiconducting polymer films with 50 nm features and their application to organic heterojunction solar cells. Nanotechnology, 19 (2008)
43.
Zurück zum Zitat R.F. Pease, S.Y. Chou, Lithography and other patterning techniques for future electronics. Proc. IEEE 96, 248–270 (2008)CrossRef R.F. Pease, S.Y. Chou, Lithography and other patterning techniques for future electronics. Proc. IEEE 96, 248–270 (2008)CrossRef
44.
Zurück zum Zitat W. Wu, Z.N. Yu, S.Y. Wang, R.S. Williams, Y.M. Liu, C. Sun, et al., Midinfrared metamaterials fabricated by nanoimprint lithography. Appl. Phys. Lett. 90 (2007) W. Wu, Z.N. Yu, S.Y. Wang, R.S. Williams, Y.M. Liu, C. Sun, et al., Midinfrared metamaterials fabricated by nanoimprint lithography. Appl. Phys. Lett. 90 (2007)
45.
Zurück zum Zitat S.X. Dai, Y. Wang, D.B. Zhang, X. Han, Q. Shi, S.J. Wang et al., Fabrication of surface-patterned ZnO thin films using sol-gel methods and nanoimprint lithography. J. Sol-Gel. Sci. Technol. 60, 17–22 (2011)CrossRef S.X. Dai, Y. Wang, D.B. Zhang, X. Han, Q. Shi, S.J. Wang et al., Fabrication of surface-patterned ZnO thin films using sol-gel methods and nanoimprint lithography. J. Sol-Gel. Sci. Technol. 60, 17–22 (2011)CrossRef
46.
Zurück zum Zitat T. Glinsner, P. Lindner, M. Muhlberger, I. Bergmair, R. Schoftner, K. Hingerl et al., Fabrication of 3D-photonic crystals via UV-nanoimprint lithography. J. Vac. Sci. Technol. B 25, 2337–2340 (2007)CrossRef T. Glinsner, P. Lindner, M. Muhlberger, I. Bergmair, R. Schoftner, K. Hingerl et al., Fabrication of 3D-photonic crystals via UV-nanoimprint lithography. J. Vac. Sci. Technol. B 25, 2337–2340 (2007)CrossRef
47.
Zurück zum Zitat J.B. Goodenough, Summary of losses in magnetic materials. IEEE Transac. Magnet. 38, 3398–3408 (2002)CrossRef J.B. Goodenough, Summary of losses in magnetic materials. IEEE Transac. Magnet. 38, 3398–3408 (2002)CrossRef
48.
Zurück zum Zitat S. Sakka, Handbook of sol-gel science and technology: processing, characterization and applications. Kluwer Academic, Boston, Mass, London (2005) S. Sakka, Handbook of sol-gel science and technology: processing, characterization and applications. Kluwer Academic, Boston, Mass, London (2005)
49.
Zurück zum Zitat C.J. Brinker, G.W. Scherer, Sol-gel science: the physics and chemistry of sol-gel processing (Academic Press, Boston, 1990) C.J. Brinker, G.W. Scherer, Sol-gel science: the physics and chemistry of sol-gel processing (Academic Press, Boston, 1990)
50.
Zurück zum Zitat N. Sahu, B. Parija, S. Panigrahi, Fundamental understanding and modeling of spin coating process: a review. Indian J. Phys. Proceed. Indian Assoc. Cultivation Sci. 83, 493–502 (2009) N. Sahu, B. Parija, S. Panigrahi, Fundamental understanding and modeling of spin coating process: a review. Indian J. Phys. Proceed. Indian Assoc. Cultivation Sci. 83, 493–502 (2009)
51.
Zurück zum Zitat G.A. Luurtsema, Spin coating for rectangular substrates: electronics research laboratory, college of engineering, University of California (1997) G.A. Luurtsema, Spin coating for rectangular substrates: electronics research laboratory, college of engineering, University of California (1997)
52.
Zurück zum Zitat V. Trabadelo, H. Schift, S. Merino, S. Bellini, and J. Gobrecht, Measurement of demolding forces in full wafer thermal nanoimprint. Microelectro. Eng. 85, 907–909 (2008) V. Trabadelo, H. Schift, S. Merino, S. Bellini, and J. Gobrecht, Measurement of demolding forces in full wafer thermal nanoimprint. Microelectro. Eng. 85, 907–909 (2008)
53.
Zurück zum Zitat R. Kirchner, A. Finn, R. Landgraf, L. Nueske, M. Vogler, W.J. Fischer, UV-based nanoimprint lithography: Toward direct patterning of functional polymers. J. Photopolym. Sci. Technol. 25, 197–206 (2012)CrossRef R. Kirchner, A. Finn, R. Landgraf, L. Nueske, M. Vogler, W.J. Fischer, UV-based nanoimprint lithography: Toward direct patterning of functional polymers. J. Photopolym. Sci. Technol. 25, 197–206 (2012)CrossRef
54.
Zurück zum Zitat G. Kreindl, T. Glinsner, R. Miller, D. Treiblmayr, R. Fodisch, High accuracy UV-nanoimprint lithography step-and-repeat master stamp fabrication for wafer level camera application. J. Vacuum Sci. Technol. B, 28, C6m57–C6m62 (2010) G. Kreindl, T. Glinsner, R. Miller, D. Treiblmayr, R. Fodisch, High accuracy UV-nanoimprint lithography step-and-repeat master stamp fabrication for wafer level camera application. J. Vacuum Sci. Technol. B, 28, C6m57–C6m62 (2010)
55.
Zurück zum Zitat K. Ishibashi, H. Goto, T. Kasahara, J. Mizuno, S. Shoji, Large area nano pattern fabrication using improved step and repeat UV nanoimprint. J. Photopolym. Sci. Technol. 25, 235–238 (2012)CrossRef K. Ishibashi, H. Goto, T. Kasahara, J. Mizuno, S. Shoji, Large area nano pattern fabrication using improved step and repeat UV nanoimprint. J. Photopolym. Sci. Technol. 25, 235–238 (2012)CrossRef
56.
Zurück zum Zitat C. Peroz, S. Dhuey, M. Volger, Y. Wu, D. Olynick, S. Cabrini, Step and repeat UV nanoimprint lithography on pre-spin coated resist film: a promising route for fabricating nanodevices. Nanotechnology, 21 (2010) C. Peroz, S. Dhuey, M. Volger, Y. Wu, D. Olynick, S. Cabrini, Step and repeat UV nanoimprint lithography on pre-spin coated resist film: a promising route for fabricating nanodevices. Nanotechnology, 21 (2010)
57.
Zurück zum Zitat H. Yoshikawa, J. Taniguchi, G. Tazaki, T. Zento, Fabrication of high-aspect-ratio pattern via high throughput roll-to-roll ultraviolet nanoimprint lithography. Microelectron. Eng. 112, 273–277 (2013)CrossRef H. Yoshikawa, J. Taniguchi, G. Tazaki, T. Zento, Fabrication of high-aspect-ratio pattern via high throughput roll-to-roll ultraviolet nanoimprint lithography. Microelectron. Eng. 112, 273–277 (2013)CrossRef
58.
Zurück zum Zitat R. Inanami, T. Ojima, K. Matsuki, T. Kono, T. Nakasugi, Sub-100 nm pattern formation by roll-to-roll nanoimprint. Altern. Lithogr. Technol. Iv, 8323 (2012) R. Inanami, T. Ojima, K. Matsuki, T. Kono, T. Nakasugi, Sub-100 nm pattern formation by roll-to-roll nanoimprint. Altern. Lithogr. Technol. Iv, 8323 (2012)
59.
Zurück zum Zitat T. Ruotsalainen, K. Solehmainen, J. Hiitola-Keinanen, J. Hast, M. Kansakoski, H. Gold, et al., Towards roll-to-roll manufacturing: organic thin film transistors based on nanoimprint lithography technique. In: Proceedings of the 8th International Conference on Multi-Material Micro Manufacture (4 m 2011), pp. 325–327 T. Ruotsalainen, K. Solehmainen, J. Hiitola-Keinanen, J. Hast, M. Kansakoski, H. Gold, et al., Towards roll-to-roll manufacturing: organic thin film transistors based on nanoimprint lithography technique. In: Proceedings of the 8th International Conference on Multi-Material Micro Manufacture (4 m 2011), pp. 325–327
60.
Zurück zum Zitat H. Lan, Y. Ding, H. Liu, Nanoimprint lithography: principles, processes and materials (Nova Science Publishers Inc, New York, 2011) H. Lan, Y. Ding, H. Liu, Nanoimprint lithography: principles, processes and materials (Nova Science Publishers Inc, New York, 2011)
61.
Zurück zum Zitat W. Zhou, Nanoimprint lithography: an enabling process for nanofabrication (Springer, New York, 2012) W. Zhou, Nanoimprint lithography: an enabling process for nanofabrication (Springer, New York, 2012)
62.
Zurück zum Zitat H. Kim, D. Kim, C. Lee, J. Kim, Laser interference lithography using spray/spin photoresist development method for consistent periodic nanostructures. Curr. Appl. Phys. 14, 209–214 (2014)CrossRef H. Kim, D. Kim, C. Lee, J. Kim, Laser interference lithography using spray/spin photoresist development method for consistent periodic nanostructures. Curr. Appl. Phys. 14, 209–214 (2014)CrossRef
63.
Zurück zum Zitat J. de Boor, D.S. Kim, V. Schmidt, Sub-50 nm patterning by immersion interference lithography using a Littrow prism as a Lloyd’s interferometer. Opt. Lett. 35, 3450–3452 (2010)CrossRef J. de Boor, D.S. Kim, V. Schmidt, Sub-50 nm patterning by immersion interference lithography using a Littrow prism as a Lloyd’s interferometer. Opt. Lett. 35, 3450–3452 (2010)CrossRef
64.
Zurück zum Zitat T.M. Bloomstein, M.F. Marchant, S. Deneault, D.E. Hardy, M. Rothschild, 22-nm immersion interference lithography. Opt. Express 14, 6434–6443 (2006)CrossRef T.M. Bloomstein, M.F. Marchant, S. Deneault, D.E. Hardy, M. Rothschild, 22-nm immersion interference lithography. Opt. Express 14, 6434–6443 (2006)CrossRef
65.
Zurück zum Zitat A. Bagal, C.-H. Chang, Fabrication of subwavelength periodic nanostructures using liquid immersion Lloyd’s mirror interference lithography. Opt. Lett. 38, 2531–2534 (2013)CrossRef A. Bagal, C.-H. Chang, Fabrication of subwavelength periodic nanostructures using liquid immersion Lloyd’s mirror interference lithography. Opt. Lett. 38, 2531–2534 (2013)CrossRef
66.
Zurück zum Zitat J.-H. Jang, C.K. Ullal, T. Gorishnyy, V.V. Tsukruk, E.L. Thomas, Mechanically tunable three-dimensional elastomeric network/air structures via interference lithography. Nano Lett. 6, 740–743 (2006)CrossRef J.-H. Jang, C.K. Ullal, T. Gorishnyy, V.V. Tsukruk, E.L. Thomas, Mechanically tunable three-dimensional elastomeric network/air structures via interference lithography. Nano Lett. 6, 740–743 (2006)CrossRef
67.
Zurück zum Zitat H.I. Smith, Low cost nanolithography with nanoaccuracy. Physica E 11, 104–109 (2001)CrossRef H.I. Smith, Low cost nanolithography with nanoaccuracy. Physica E 11, 104–109 (2001)CrossRef
68.
Zurück zum Zitat C.G. Chen, P.T. Konkola, R.K. Heilmann, C. Joo, M.L. Schattenburg, Nanometer-accurate grating fabrication with scanning beam interference lithography (2002), pp. 126–134 C.G. Chen, P.T. Konkola, R.K. Heilmann, C. Joo, M.L. Schattenburg, Nanometer-accurate grating fabrication with scanning beam interference lithography (2002), pp. 126–134
69.
Zurück zum Zitat K.H. Ralf, G.C. Carl, T.K. Paul, L.S. Mark, Dimensional metrology for nanometre-scale science and engineering: towards sub-nanometre accurate encoders. Nanotechnology 15, S504 (2004)CrossRef K.H. Ralf, G.C. Carl, T.K. Paul, L.S. Mark, Dimensional metrology for nanometre-scale science and engineering: towards sub-nanometre accurate encoders. Nanotechnology 15, S504 (2004)CrossRef
70.
Zurück zum Zitat T.B. O’Reilly, H.I. Smith, Linewidth uniformity in Lloyd’s mirror interference lithography systems. J. Vac. Sci. Technol., B 26, 2131–2134 (2008)CrossRef T.B. O’Reilly, H.I. Smith, Linewidth uniformity in Lloyd’s mirror interference lithography systems. J. Vac. Sci. Technol., B 26, 2131–2134 (2008)CrossRef
71.
Zurück zum Zitat R.K. Heilmann, C.G. Chen, P.T. Konkola, M.L. Schattenburg, Dimensional metrology for nanometre-scale science and engineering: towards sub-nanometre accurate encoders. Nanotechnology 15, S504–S511 (2004)CrossRef R.K. Heilmann, C.G. Chen, P.T. Konkola, M.L. Schattenburg, Dimensional metrology for nanometre-scale science and engineering: towards sub-nanometre accurate encoders. Nanotechnology 15, S504–S511 (2004)CrossRef
72.
Zurück zum Zitat G. Rasic, J. Schwartz, Nanoimprint lithographic surface patterning of sol–gel fabricated nickel ferrite (NiFe2O4). MRS Communications 3, 207–211 (2013)CrossRef G. Rasic, J. Schwartz, Nanoimprint lithographic surface patterning of sol–gel fabricated nickel ferrite (NiFe2O4). MRS Communications 3, 207–211 (2013)CrossRef
73.
Zurück zum Zitat G. Rasic, J. Schwartz, Coercivity reduction in nickel ferrite (NiFe2O4) thin films through surface patterning. Mag. Lett. IEEE 5, 1–4 (2014)CrossRef G. Rasic, J. Schwartz, Coercivity reduction in nickel ferrite (NiFe2O4) thin films through surface patterning. Mag. Lett. IEEE 5, 1–4 (2014)CrossRef
74.
Zurück zum Zitat G. Rasic, J. Schwartz, On the origin of coercivity reduction in surface patterned magnetic thin films, Physica Status Solidi (a), 212, 449–458 (2015) G. Rasic, J. Schwartz, On the origin of coercivity reduction in surface patterned magnetic thin films, Physica Status Solidi (a), 212, 449–458 (2015)
Metadaten
Titel
Reducing Losses in Magnetic Thin Films Through Nanoscale Surface Patterning
verfasst von
Goran Rasic
Branislav Vlahovic
Justin Schwartz
Copyright-Jahr
2017
DOI
https://doi.org/10.2991/978-94-6239-213-7_4

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.