Skip to main content

2017 | OriginalPaper | Buchkapitel

Reducing Training Environments in Evolutionary Robotics Through Ecological Modularity

verfasst von : Collin Cappelle, Anton Bernatskiy, Josh Bongard

Erschienen in: Biomimetic and Biohybrid Systems

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Due to the large number of evaluations required, evolutionary robotics experiments are generally conducted in simulated environments. One way to increase the generality of a robot’s behavior is to evolve it in multiple environments. These environment spaces can be defined by the number of free parameters (f) and the number of variations each free parameter can take (n). Each environment space then has \(n^f\) individual environments. For a robot to be fit in the environment space it must perform well in each of the \(n^f\) environments. Thus the number of environments grows exponentially as n and f are increased. To mitigate the problem of having to evolve a robot in each environment in the space we introduce the concept of ecological modularity. Ecological modularity is here defined as the robot’s modularity with respect to free parameters in its environment space. We show that if a robot is modular along m of the free parameters in its environment space, it only needs to be evolved in \(n^{f-m+1}\) environments to be fit in all of the \(n^f\) environments. This work thus presents a heretofore unknown relationship between the modularity of an agent and its ability to generalize evolved behaviors in new environments.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bongard, J., Bernatskiy, A., Livingston, K., Livingston, N., Long, J., Smith, M.: Evolving robot morphology facilitates the evolution of neural modularity and evolvability. In: Proceedings of the 2015 Genetic and Evolutionary Computation Conference, p. 129136. ACM, Madrid (2015) Bongard, J., Bernatskiy, A., Livingston, K., Livingston, N., Long, J., Smith, M.: Evolving robot morphology facilitates the evolution of neural modularity and evolvability. In: Proceedings of the 2015 Genetic and Evolutionary Computation Conference, p. 129136. ACM, Madrid (2015)
2.
Zurück zum Zitat Bongard, J.: Morphological change in machines accelerates the evolution of robust behavior. Proc. Nat. Acad. Sci. 108(4), 1234–1239 (2011)CrossRef Bongard, J.: Morphological change in machines accelerates the evolution of robust behavior. Proc. Nat. Acad. Sci. 108(4), 1234–1239 (2011)CrossRef
3.
Zurück zum Zitat Bongard, J.C.: Spontaneous evolution of structural modularity in robot neural network controllers. In: Proceedings of the 2011 Genetic and Evolutionary Computation Conference, pp. 251–258. ACM, Dublin (2011) Bongard, J.C.: Spontaneous evolution of structural modularity in robot neural network controllers. In: Proceedings of the 2011 Genetic and Evolutionary Computation Conference, pp. 251–258. ACM, Dublin (2011)
4.
Zurück zum Zitat Cappelle, C.K., Bernatskiy, A., Livingston, K., Livingston, N., Bongard, J.: Morphological modularity can enable the evolution of robot behavior to scale linearly with the number of environmental features. Front. Rob. AI 3, 59 (2016) Cappelle, C.K., Bernatskiy, A., Livingston, K., Livingston, N., Bongard, J.: Morphological modularity can enable the evolution of robot behavior to scale linearly with the number of environmental features. Front. Rob. AI 3, 59 (2016)
5.
Zurück zum Zitat Clune, J., Mouret, J.B., Lipson, H.: The evolutionary origins of modularity. Proc. R. Soc. B Biol. Sci. 280(1755), 20122863 (2013)CrossRef Clune, J., Mouret, J.B., Lipson, H.: The evolutionary origins of modularity. Proc. R. Soc. B Biol. Sci. 280(1755), 20122863 (2013)CrossRef
6.
Zurück zum Zitat Ellefsen, K.O., Mouret, J.B., Clune, J.: Neural modularity helps organisms evolve to learn new skills without forgetting old skills. PLoS Comput. Biol. 11(4), e1004128 (2015)CrossRef Ellefsen, K.O., Mouret, J.B., Clune, J.: Neural modularity helps organisms evolve to learn new skills without forgetting old skills. PLoS Comput. Biol. 11(4), e1004128 (2015)CrossRef
7.
Zurück zum Zitat Espinosa-Soto, C., Wagner, A.: Specialization can drive the evolution of modularity. PLoS Comput. Biol. 6(3), e1000719 (2010)MathSciNetCrossRef Espinosa-Soto, C., Wagner, A.: Specialization can drive the evolution of modularity. PLoS Comput. Biol. 6(3), e1000719 (2010)MathSciNetCrossRef
8.
Zurück zum Zitat French, R.M.: Catastrophic forgetting in connectionist networks. Trends Cogn. Sci. 3(4), 128–135 (1999)CrossRef French, R.M.: Catastrophic forgetting in connectionist networks. Trends Cogn. Sci. 3(4), 128–135 (1999)CrossRef
9.
Zurück zum Zitat Gruau, F.: Automatic definition of modular neural networks. Adapt. Behav. 3, 151–183 (1994)CrossRef Gruau, F.: Automatic definition of modular neural networks. Adapt. Behav. 3, 151–183 (1994)CrossRef
10.
Zurück zum Zitat Jakobi, N., Husbands, P., Harvey, I.: Noise and the reality gap: the use of simulation in evolutionary robotics. In: Morán, F., Moreno, A., Merelo, J.J., Chacón, P. (eds.) ECAL 1995. LNCS, vol. 929, pp. 704–720. Springer, Heidelberg (1995). doi:10.1007/3-540-59496-5_337 CrossRef Jakobi, N., Husbands, P., Harvey, I.: Noise and the reality gap: the use of simulation in evolutionary robotics. In: Morán, F., Moreno, A., Merelo, J.J., Chacón, P. (eds.) ECAL 1995. LNCS, vol. 929, pp. 704–720. Springer, Heidelberg (1995). doi:10.​1007/​3-540-59496-5_​337 CrossRef
11.
Zurück zum Zitat Kashtan, N., Alon, U.: Spontaneous evolution of modularity and network motifs. PNAS 102(39), 13773 (2005)CrossRef Kashtan, N., Alon, U.: Spontaneous evolution of modularity and network motifs. PNAS 102(39), 13773 (2005)CrossRef
12.
Zurück zum Zitat Lehman, J., Risi, S., D’Ambrosio, D., Stanley, K.O.: Encouraging reactivity to create robust machines. Adapt. Behav. 21, 484–500 (2013)CrossRef Lehman, J., Risi, S., D’Ambrosio, D., Stanley, K.O.: Encouraging reactivity to create robust machines. Adapt. Behav. 21, 484–500 (2013)CrossRef
13.
Zurück zum Zitat Lipson, H., Pollack, J.B., Suh, N.P., Wainwright, P.: On the origin of modular variation. Evolution 56(8), 1549–1556 (2002)CrossRef Lipson, H., Pollack, J.B., Suh, N.P., Wainwright, P.: On the origin of modular variation. Evolution 56(8), 1549–1556 (2002)CrossRef
14.
Zurück zum Zitat Matarić, M., Cliff, D.: Challenges in evolving controllers for physical robots. Rob. Auton. Syst. 19(1), 67–83 (1996)CrossRef Matarić, M., Cliff, D.: Challenges in evolving controllers for physical robots. Rob. Auton. Syst. 19(1), 67–83 (1996)CrossRef
15.
Zurück zum Zitat Newman, M.E., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E 69(2), 026113 (2004)CrossRef Newman, M.E., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E 69(2), 026113 (2004)CrossRef
16.
Zurück zum Zitat Schmidt, M., Lipson, H.: Age-fitness pareto optimization. In: Riolo, R., McConaghy, T., Vladislavleva, E. (eds.) Genetic Programming Theory and Practice VIII. Genetic and Evolutionary Computation, vol. 8, pp. 129–146. Springer, New York (2011). doi:10.1007/978-1-4419-7747-2_8 CrossRef Schmidt, M., Lipson, H.: Age-fitness pareto optimization. In: Riolo, R., McConaghy, T., Vladislavleva, E. (eds.) Genetic Programming Theory and Practice VIII. Genetic and Evolutionary Computation, vol. 8, pp. 129–146. Springer, New York (2011). doi:10.​1007/​978-1-4419-7747-2_​8 CrossRef
17.
Zurück zum Zitat Wagner, G., Pavlicev, M., Cheverud, J.: The road to modularity. Nat. Rev. Genetics 8(12), 921–931 (2007)CrossRef Wagner, G., Pavlicev, M., Cheverud, J.: The road to modularity. Nat. Rev. Genetics 8(12), 921–931 (2007)CrossRef
18.
Zurück zum Zitat Yamashita, Y., Tani, J.: Emergence of functional hierarchy in a multiple timescale neural network model: a humanoid robot experiment. PLoS Comput. Biol. 4(11), e1000220 (2008)CrossRef Yamashita, Y., Tani, J.: Emergence of functional hierarchy in a multiple timescale neural network model: a humanoid robot experiment. PLoS Comput. Biol. 4(11), e1000220 (2008)CrossRef
Metadaten
Titel
Reducing Training Environments in Evolutionary Robotics Through Ecological Modularity
verfasst von
Collin Cappelle
Anton Bernatskiy
Josh Bongard
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-63537-8_9