Skip to main content

2017 | OriginalPaper | Buchkapitel

4. Reduction and Removal of Cr(VI) from Aqueous Solution by Microplasma

verfasst von : ChangMing Du, JianHua Yan

Erschienen in: Plasma Remediation Technology for Environmental Protection

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this chapter, the reduction and removal of Cr(VI) from aqueous solution by microplasma are explained, which represents a new and fascinating realm of plasma science for the first time. The effect of various process parameters on the Cr(VI) reduction efficiency and the effect of initial pH and ethanol on the removal of Cr(VI) are systematically examined. The optimum condition for Cr(VI) reduction was initial pH at 2 with stir where the microdischarge gas was argon with the flow rate of 60 mL/min. The reduction efficiency of Cr(VI) increased with an increase in input power but decreased with an increasing initial concentration of Cr(VI). In particular, additive hydroxyl radical scavenger (ethanol) greatly improved the reduction efficiency and facilitated the removal of chromium dissolved in the solution. The best removal efficiency was obtained when the pH was 6. In addition, the energy efficiency of microplasma to reduce Cr(VI) is 2.0 × 10−4 mg/J and is comparable to that in electrolysis and other forms of glow discharge. The advantages, such as low cost, scalability, and easy operating techniques, of this approach have broad prospects in water treatment (Xiao in Removal of hexavalent chromium in water and preparation of cuprous oxide nanoparticles by microplasma. Yat–sen University, 2012, [1]; Du in Non-Thermal arc plasma technology and application. BeiJing: Chemical Industry Press, 2015, [2].

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Xiao MD. Removal of hexavalent chromium in water and preparation of cuprous oxide nanoparticles by microplasma. Yat–sen University; 2012. Xiao MD. Removal of hexavalent chromium in water and preparation of cuprous oxide nanoparticles by microplasma. Yat–sen University; 2012.
2.
Zurück zum Zitat Du CM. Non-Thermal arc plasma technology and application. BeiJing: Chemical Industry Press; 2015. Du CM. Non-Thermal arc plasma technology and application. BeiJing: Chemical Industry Press; 2015.
3.
Zurück zum Zitat Zhou YF, Haynes RJ. Removal of Pb(II), Cr(III) and Cr(VI) from aqueous solutions using alum-derived water treatment sludge. Water Air Soil Poll. 2010;215(1–4):631–43. Zhou YF, Haynes RJ. Removal of Pb(II), Cr(III) and Cr(VI) from aqueous solutions using alum-derived water treatment sludge. Water Air Soil Poll. 2010;215(1–4):631–43.
4.
Zurück zum Zitat Owlad M, Aroua MK, Daud WAW, Baroutian S. Removal of hexavalent chromium-contaminated water and wastewater: a review. Water Air Soil Poll. 2008;200(1–4):59–77. Owlad M, Aroua MK, Daud WAW, Baroutian S. Removal of hexavalent chromium-contaminated water and wastewater: a review. Water Air Soil Poll. 2008;200(1–4):59–77.
5.
Zurück zum Zitat Mungasavalli DP, Viraraghavan T, Jin YC. Biosorption of chromium from aqueous solutions by pretreated Aspergillus niger: batch and column studies. Colloid Surf A. 2007;301(1–3):214–23.CrossRef Mungasavalli DP, Viraraghavan T, Jin YC. Biosorption of chromium from aqueous solutions by pretreated Aspergillus niger: batch and column studies. Colloid Surf A. 2007;301(1–3):214–23.CrossRef
6.
Zurück zum Zitat Pugazhenthi G, Sachan S, Kishore N, Kumar A. Separation of chromium (VI) using modified ultrafiltration charged carbon membrane and its mathematical modeling. J Membr Sci. 2005;254(1–2):229–39.CrossRef Pugazhenthi G, Sachan S, Kishore N, Kumar A. Separation of chromium (VI) using modified ultrafiltration charged carbon membrane and its mathematical modeling. J Membr Sci. 2005;254(1–2):229–39.CrossRef
7.
Zurück zum Zitat Gupta VK, Gupta M, Sharma S. Process development for the removal of lead and chromium from aqueous solutions using red mud—an aluminium industry waste. Water Res. 2001;35(5):1125–34.CrossRef Gupta VK, Gupta M, Sharma S. Process development for the removal of lead and chromium from aqueous solutions using red mud—an aluminium industry waste. Water Res. 2001;35(5):1125–34.CrossRef
8.
Zurück zum Zitat Mohan D. Pittman CUJr. Activated carbons and low cost adsorbents for remediation of tri-and hexavalent chromium from water. J Hazard Mater. 2006;137(2):762–811.CrossRef Mohan D. Pittman CUJr. Activated carbons and low cost adsorbents for remediation of tri-and hexavalent chromium from water. J Hazard Mater. 2006;137(2):762–811.CrossRef
9.
Zurück zum Zitat Kumar PA, Ray M, Chakraborty S. Hexavalent chromium removal from wastewater using aniline formaldehyde condensate coated silica gel. J Hazard Mater. 2007;143(1–2):24–32.CrossRef Kumar PA, Ray M, Chakraborty S. Hexavalent chromium removal from wastewater using aniline formaldehyde condensate coated silica gel. J Hazard Mater. 2007;143(1–2):24–32.CrossRef
10.
Zurück zum Zitat Chakravarti AK, Chowdhury SB, Chakrabarty S, Chakrabarty T, Mukherjee DC. Liquid membrane multiple emulsion process of chromium(VI) separation from waste waters. Colloid Surf A. 1995;103(1–2):59–71.CrossRef Chakravarti AK, Chowdhury SB, Chakrabarty S, Chakrabarty T, Mukherjee DC. Liquid membrane multiple emulsion process of chromium(VI) separation from waste waters. Colloid Surf A. 1995;103(1–2):59–71.CrossRef
11.
Zurück zum Zitat Pagilla KR, Canter LW. Laboratory studies on remediation of chromium-contaminated soils. J Environ Eng-Asce. 1999;125(3):243–8.CrossRef Pagilla KR, Canter LW. Laboratory studies on remediation of chromium-contaminated soils. J Environ Eng-Asce. 1999;125(3):243–8.CrossRef
12.
Zurück zum Zitat Nataraj SK, Hosamani KM, Aminabhavi TM. Potential application of an electrodialysis pilot plant containing ion-exchange membranes in chromium removal. Desalin. 2007;217(1–3):181–90.CrossRef Nataraj SK, Hosamani KM, Aminabhavi TM. Potential application of an electrodialysis pilot plant containing ion-exchange membranes in chromium removal. Desalin. 2007;217(1–3):181–90.CrossRef
13.
Zurück zum Zitat Liu Y. Simultaneous oxidation of phenol and reduction of Cr(VI) induced by contact glow discharge electrolysis. J Hazard Mater. 2009;168(2–3):992–6.CrossRef Liu Y. Simultaneous oxidation of phenol and reduction of Cr(VI) induced by contact glow discharge electrolysis. J Hazard Mater. 2009;168(2–3):992–6.CrossRef
14.
Zurück zum Zitat Fang XH, Zhang GQ, Chen J, Wang D, Yang FL. Electrochemical reduction of hexavalent chromium on two-step electrosynthesized one-dimensional polyaniline nanowire. Int J Electrochem Sc. 2012;7(12):11847–58. Fang XH, Zhang GQ, Chen J, Wang D, Yang FL. Electrochemical reduction of hexavalent chromium on two-step electrosynthesized one-dimensional polyaniline nanowire. Int J Electrochem Sc. 2012;7(12):11847–58.
15.
Zurück zum Zitat Valix M, Cheung WH, Zhang K. Role of heteroatoms in activated carbon for removal of hexavalent chromium from wastewaters. J Hazard Mater. 2006;135(1–3):395–405.CrossRef Valix M, Cheung WH, Zhang K. Role of heteroatoms in activated carbon for removal of hexavalent chromium from wastewaters. J Hazard Mater. 2006;135(1–3):395–405.CrossRef
16.
Zurück zum Zitat Wang L, Jiang XZ. Plasma-induced reduction of chromium(VI) in an aqueous solution. Environ Sci Technol. 2008;42(22):8492–7.CrossRef Wang L, Jiang XZ. Plasma-induced reduction of chromium(VI) in an aqueous solution. Environ Sci Technol. 2008;42(22):8492–7.CrossRef
17.
Zurück zum Zitat Wang J, Sun Y, Miao H, Xu J, Feng J. Simultaneous removal of aqueous Cr(VI) and phenol by corona discharge plasma. Acta Sci Vet. 2012;32(10):2415–21. Wang J, Sun Y, Miao H, Xu J, Feng J. Simultaneous removal of aqueous Cr(VI) and phenol by corona discharge plasma. Acta Sci Vet. 2012;32(10):2415–21.
18.
Zurück zum Zitat Ke Z, Huang Q, Zhang H, Yu Z. Reduction and removal of aqueous Cr(VI) by glow discharge plasma at the gas–solution interface. Environ Sci Technol. 2011;45(18):7841–7.CrossRef Ke Z, Huang Q, Zhang H, Yu Z. Reduction and removal of aqueous Cr(VI) by glow discharge plasma at the gas–solution interface. Environ Sci Technol. 2011;45(18):7841–7.CrossRef
19.
Zurück zum Zitat Becker KH, Schoenbach KH, Eden JG. Microplasmas and applications. J Phys D Appl Phys. 2006;39(39):85–8. Becker KH, Schoenbach KH, Eden JG. Microplasmas and applications. J Phys D Appl Phys. 2006;39(39):85–8.
20.
Zurück zum Zitat El-Habachi A, Schoenbach KH. Generation of intense excimer radiation from high-pressure hollow cathode discharges. Appl Phys Lett. 1998;73(7):885–887. El-Habachi A, Schoenbach KH. Generation of intense excimer radiation from high-pressure hollow cathode discharges. Appl Phys Lett. 1998;73(7):885–887.
21.
Zurück zum Zitat Sankaran RM, Giapis KP, Moselhy M, Schoenbach KH. Argon excimer emission from high-pressure microdischarges in metal capillaries. Appl Phys Lett. 2003;83(23):4728–30.CrossRef Sankaran RM, Giapis KP, Moselhy M, Schoenbach KH. Argon excimer emission from high-pressure microdischarges in metal capillaries. Appl Phys Lett. 2003;83(23):4728–30.CrossRef
22.
Zurück zum Zitat Park SJ, Eden JG, Chen J, Liu C. Microdischarge devices with 10 or 30 μm square silicon cathode cavities: pd scaling and production of the XeO excimer. Appl Phys Lett. 2004;85(21):4869–71.CrossRef Park SJ, Eden JG, Chen J, Liu C. Microdischarge devices with 10 or 30 μm square silicon cathode cavities: pd scaling and production of the XeO excimer. Appl Phys Lett. 2004;85(21):4869–71.CrossRef
23.
Zurück zum Zitat Park SJ, Eden JG. 13–30 micron diameter microdischarge devices: atomic ion and molecular emission at above atmospheric pressures. Appl Phys Lett. 2002;81(22):4127–9.CrossRef Park SJ, Eden JG. 13–30 micron diameter microdischarge devices: atomic ion and molecular emission at above atmospheric pressures. Appl Phys Lett. 2002;81(22):4127–9.CrossRef
24.
Zurück zum Zitat Kurunczia P, Abramzona N, Figus M, Becker K. Measurement of rotational temperatures in high-pressure microhollow cathode(MHC) and capillary plasma electrode(CPE) discharges. Acta Phys Slovaca. 2004;54(2):115–24. Kurunczia P, Abramzona N, Figus M, Becker K. Measurement of rotational temperatures in high-pressure microhollow cathode(MHC) and capillary plasma electrode(CPE) discharges. Acta Phys Slovaca. 2004;54(2):115–24.
25.
Zurück zum Zitat Penache C, Miclea M, Bräuning-Demian A, Hohn O, Schössler S, Jahnke T, Niemax K, Schmidt-Böckingocking H. Characterization of a high-pressure microdischarge using diode laser atomic absorption spectroscopy. Plasma Sources Sci T. 2002;11(4):476–83.CrossRef Penache C, Miclea M, Bräuning-Demian A, Hohn O, Schössler S, Jahnke T, Niemax K, Schmidt-Böckingocking H. Characterization of a high-pressure microdischarge using diode laser atomic absorption spectroscopy. Plasma Sources Sci T. 2002;11(4):476–83.CrossRef
26.
Zurück zum Zitat Mariotti D, Sankaran RM. Perspectives on atmospheric-pressure plasmas for nanofabrication. J Phys D Appl Phys. 2011;44108(44):228–36. Mariotti D, Sankaran RM. Perspectives on atmospheric-pressure plasmas for nanofabrication. J Phys D Appl Phys. 2011;44108(44):228–36.
27.
Zurück zum Zitat Water quality—determination of chromium(6)–1.5 diphenylcarbahydrazide spectrophotometric method. GB7467–1987, China; 1987. Water quality—determination of chromium(6)–1.5 diphenylcarbahydrazide spectrophotometric method. GB7467–1987, China; 1987.
28.
Zurück zum Zitat Gallard H, Laat JD. Kinetic modelling of Fe(III)/H2O2 oxidation reactions in dilute aqueous solution using atrazine as a model organic compound. Water Res. 2000;34(12):3107–16.CrossRef Gallard H, Laat JD. Kinetic modelling of Fe(III)/H2O2 oxidation reactions in dilute aqueous solution using atrazine as a model organic compound. Water Res. 2000;34(12):3107–16.CrossRef
29.
Zurück zum Zitat Das DP, Parida K, De BR. Photocatalytic reduction of hexavalent chromium in aqueous solution over titania pillared zirconium phosphate and titanium phosphate under solar radiation. J Mol Catal A-Chem. 2006;245(1–2):217–24.CrossRef Das DP, Parida K, De BR. Photocatalytic reduction of hexavalent chromium in aqueous solution over titania pillared zirconium phosphate and titanium phosphate under solar radiation. J Mol Catal A-Chem. 2006;245(1–2):217–24.CrossRef
30.
Zurück zum Zitat Mohapatra P, Samantaray SK, Parida K. Photocatalytic reduction of hexavalent chromium in aqueous solution over sulphate modified titania. J Photoch Photobio A. 2005;170(2):189–94.CrossRef Mohapatra P, Samantaray SK, Parida K. Photocatalytic reduction of hexavalent chromium in aqueous solution over sulphate modified titania. J Photoch Photobio A. 2005;170(2):189–94.CrossRef
31.
Zurück zum Zitat Du CM, Shi TH, Sun YW, Zhuang XF. Decolorization of acid orange 7 solution by gas–liquid gliding arc discharge plasma. J Hazard Mater. 2008;154(1–3):1192–7.CrossRef Du CM, Shi TH, Sun YW, Zhuang XF. Decolorization of acid orange 7 solution by gas–liquid gliding arc discharge plasma. J Hazard Mater. 2008;154(1–3):1192–7.CrossRef
32.
Zurück zum Zitat Rana P, Mohan N, Rajagopal C. Electrochemical removal of chromium from wastewater by using carbon aerogel electrodes. Water Res. 2004;38(12):2811–20.CrossRef Rana P, Mohan N, Rajagopal C. Electrochemical removal of chromium from wastewater by using carbon aerogel electrodes. Water Res. 2004;38(12):2811–20.CrossRef
33.
Zurück zum Zitat Zhang H, Tang Y, Cai D, Liu X, Wang X, Huang Q, Yu Z. Hexavalent chromium removal from aqueous solution by algal bloom residue derived activated carbon: equilibrium and kinetic studies. J Hazard Mater. 2010;181(1–3):801–8.CrossRef Zhang H, Tang Y, Cai D, Liu X, Wang X, Huang Q, Yu Z. Hexavalent chromium removal from aqueous solution by algal bloom residue derived activated carbon: equilibrium and kinetic studies. J Hazard Mater. 2010;181(1–3):801–8.CrossRef
34.
Zurück zum Zitat Amonette JE, Rai D. Identification of noncrystalline (Fe, Cr)(OH)3 by infrared spectroscopy. Clays Clay Miner. 1990;38(2):129–36.CrossRef Amonette JE, Rai D. Identification of noncrystalline (Fe, Cr)(OH)3 by infrared spectroscopy. Clays Clay Miner. 1990;38(2):129–36.CrossRef
35.
Zurück zum Zitat Zecchina A, Coluccia S, Guglielminotti E, Ghiotti G. Infrared study of surface properties of alpha-chromia. I. preparation and adsorption of water, heavy water, and carbon monoxide. J Phys Chem. 1971;75(18):2774–83.CrossRef Zecchina A, Coluccia S, Guglielminotti E, Ghiotti G. Infrared study of surface properties of alpha-chromia. I. preparation and adsorption of water, heavy water, and carbon monoxide. J Phys Chem. 1971;75(18):2774–83.CrossRef
36.
Zurück zum Zitat Ratnasamy P, Leonard AJ. Structural evolution of chromia. J Phys Chem. 1972;76(13):1838–43.CrossRef Ratnasamy P, Leonard AJ. Structural evolution of chromia. J Phys Chem. 1972;76(13):1838–43.CrossRef
37.
Zurück zum Zitat Huang XZ, Zhong XX, Lu Y, Li YS, Rider AE, Furman SA, Ostrikov K. Plasmonic Ag nanoparticles via environment-benign atmospheric microplasma electrochemistry. Nanotechnology. 2013;24(9):793–9.CrossRef Huang XZ, Zhong XX, Lu Y, Li YS, Rider AE, Furman SA, Ostrikov K. Plasmonic Ag nanoparticles via environment-benign atmospheric microplasma electrochemistry. Nanotechnology. 2013;24(9):793–9.CrossRef
38.
Zurück zum Zitat Wang L, Liu Y. Enhancement of phenol degradation by electron acceptors in anodic contact glow discharge electrolysis. Plasma Chem Plasma P. 2012;32(4):715–722. Wang L, Liu Y. Enhancement of phenol degradation by electron acceptors in anodic contact glow discharge electrolysis. Plasma Chem Plasma P. 2012;32(4):715–722.
39.
Zurück zum Zitat And PB, Arias C. A kinetic study of the chromium(VI)-hydrogen peroxide reaction. role of the diperoxochromate(VI) intermediates. J Phys Chem A. 1997;101(26):4726–4733. And PB, Arias C. A kinetic study of the chromium(VI)-hydrogen peroxide reaction. role of the diperoxochromate(VI) intermediates. J Phys Chem A. 1997;101(26):4726–4733.
40.
Zurück zum Zitat Arroyo MG, Perez-Herranz V, Montanes MT, Garcia-Anton J, Guinon JL. Effect of pH and chloride concentration on the removal of hexavalent chromium in a batch electrocoagulation reactor. J Hazard Mater. 2009;169(1–3):1127–33.CrossRef Arroyo MG, Perez-Herranz V, Montanes MT, Garcia-Anton J, Guinon JL. Effect of pH and chloride concentration on the removal of hexavalent chromium in a batch electrocoagulation reactor. J Hazard Mater. 2009;169(1–3):1127–33.CrossRef
41.
Zurück zum Zitat Yusof AM, Malek NA. Removal of Cr(VI) and As(V) from aqueous solutions by HDTMA-modified zeolite Y. J Hazard Mater. 2009;162(2–3):1019–24.CrossRef Yusof AM, Malek NA. Removal of Cr(VI) and As(V) from aqueous solutions by HDTMA-modified zeolite Y. J Hazard Mater. 2009;162(2–3):1019–24.CrossRef
42.
Zurück zum Zitat Cotton FA, Wilkinson G. Advanced inorganic chemistry. Canada: Wiley; 1980. Cotton FA, Wilkinson G. Advanced inorganic chemistry. Canada: Wiley; 1980.
43.
Zurück zum Zitat Buxton GV, Greenstock CL, Helman WP, Ross AB. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (∙OH/∙O) in aqueous solution. J Phys Chem Ref Data. 1988;17(2):513–886.CrossRef Buxton GV, Greenstock CL, Helman WP, Ross AB. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (∙OH/∙O) in aqueous solution. J Phys Chem Ref Data. 1988;17(2):513–886.CrossRef
44.
Zurück zum Zitat Sahni M, Locke BR. Quantification of reductive species produced by high voltage electrical discharges in water. Plasma Process Polym. 2006;3(4–5):342–54.CrossRef Sahni M, Locke BR. Quantification of reductive species produced by high voltage electrical discharges in water. Plasma Process Polym. 2006;3(4–5):342–54.CrossRef
45.
Zurück zum Zitat Wang X, Jin X, Zhou M, Chen Z, Deng K. Reduction of Cr(VI) in aqueous solution with DC diaphragm glow discharge. Electrochim Acta. 2013;112(12):692–7.CrossRef Wang X, Jin X, Zhou M, Chen Z, Deng K. Reduction of Cr(VI) in aqueous solution with DC diaphragm glow discharge. Electrochim Acta. 2013;112(12):692–7.CrossRef
46.
Zurück zum Zitat Hayashi D, Hoeben WFLM, Dooms G, Veldhuizen EMV, Rutgers W, Kroesen GMW. Influence of gaseous atmosphere on corona-induced degradation of aqueous phenol. J Phys D Appl Phys, 2000, 33(21): 2769–2774(6). Hayashi D, Hoeben WFLM, Dooms G, Veldhuizen EMV, Rutgers W, Kroesen GMW. Influence of gaseous atmosphere on corona-induced degradation of aqueous phenol. J Phys D Appl Phys, 2000, 33(21): 2769–2774(6).
47.
Zurück zum Zitat Yan JH, Bo Z, Li XD, Du CM, Cen KF, Chéron BG. Study of mechanism for hexane decomposition with gliding arc gas discharge. Plasma Chem Plasma P. 2007;27(2):115–126. Yan JH, Bo Z, Li XD, Du CM, Cen KF, Chéron BG. Study of mechanism for hexane decomposition with gliding arc gas discharge. Plasma Chem Plasma P. 2007;27(2):115–126.
48.
Zurück zum Zitat Rai D, Sass BM, Moore DA. Chromium(III) hydrolysis constants and solubility of chromium(III) hydroxide. Inorg Chem. 1986;26(3):345–9.CrossRef Rai D, Sass BM, Moore DA. Chromium(III) hydrolysis constants and solubility of chromium(III) hydroxide. Inorg Chem. 1986;26(3):345–9.CrossRef
49.
Zurück zum Zitat Testa JJ, Grela MA, Litter MI. Heterogeneous photocatalytic reduction of chromium(VI) over TiO2 particles in the presence of oxalate: involvement of Cr(V) species. Environ Sci Technol. 2004;38(5):1589–94.CrossRef Testa JJ, Grela MA, Litter MI. Heterogeneous photocatalytic reduction of chromium(VI) over TiO2 particles in the presence of oxalate: involvement of Cr(V) species. Environ Sci Technol. 2004;38(5):1589–94.CrossRef
50.
Zurück zum Zitat Heidmann I, Calmano W. Removal of Cr(VI) from model wastewaters by electrocoagulation with Fe electrodes. Sep Purif Technol. 2008;61(1):15–21.CrossRef Heidmann I, Calmano W. Removal of Cr(VI) from model wastewaters by electrocoagulation with Fe electrodes. Sep Purif Technol. 2008;61(1):15–21.CrossRef
Metadaten
Titel
Reduction and Removal of Cr(VI) from Aqueous Solution by Microplasma
verfasst von
ChangMing Du
JianHua Yan
Copyright-Jahr
2017
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-3656-9_4