Skip to main content
Erschienen in: Journal of Nanoparticle Research 12/2022

01.12.2022 | Research paper

Reduction of extrinsic defects in ZnSe:perovskite composites based solar devices

verfasst von: Hasan Abbas, Mohammad Salman Khan, Sultan Ahmad, M. Parvaz, Mohd. Bilal Khan, Asim Khan, Ahmad Alshahrie, Zishan H. Khan

Erschienen in: Journal of Nanoparticle Research | Ausgabe 12/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This study presents the synthesis of ZnSe nanoparticles (NPs) via precursor solution method; preparation of perovskite and ZnSe:perovskite composites (0, 2, 4, and 6 mg/ml, respectively) via solution processing method. The synthesis of these materials has been confirmed by X-ray diffraction/XRD, UV–Visible spectroscopy, steady-state photoluminescence (PL) spectroscopy, time-resolved photoluminescence (TRPL) spectroscopy, contact angle analysis and scanning electron microscopy/SEM. As-synthesized ZnSe:perovskite composites have been deployed in the fabrication of solar cells. SEM micrographs of these composites have shown a significant reduction in extrinsic defects of perovskite films on incorporation of ZnSe NPs into perovskites matrices indicating improvement in morphology. The contact angle analysis confirmed a significant decrease in the hydrophilicity as contact angle is increased by ~ 10° as compared to that of pristine perovskite. Moreover, TRPL spectroscopy confirmed a modest increase in the lifetimes and hence, reduction in the recombination rate within ZnSe:perovskite composites. Likewise, J-V curve of as-fabricated devices demonstrates an improvement in the performance with the increase in the concentration of ZnSe NPs into perovskite. The best device based on these composites has shown an efficiency of 5.98%, open circuit voltage/Voc of 0.931 V, short circuit current density/JSC of 9.82 mA/cm2 and fill factor/FF of 65.50% which has retained 79.6% of its actual efficiency after 30 days of air exposure.

Graphical Abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Rong SS, Faheem MB, Li YB (2021) Perovskite single crystals: synthesis, properties, and applications. J Electron Sci Technol 19(2):100081CrossRef Rong SS, Faheem MB, Li YB (2021) Perovskite single crystals: synthesis, properties, and applications. J Electron Sci Technol 19(2):100081CrossRef
2.
Zurück zum Zitat Zhang J, Shum PP, Su L (2022) A review of geometry-confined perovskite morphologies: from synthesis to efficient optoelectronic applications. Nano Res 1–30 Zhang J, Shum PP, Su L (2022) A review of geometry-confined perovskite morphologies: from synthesis to efficient optoelectronic applications. Nano Res 1–30
3.
Zurück zum Zitat Green MA, Ho-Baillie A (2017) Perovskite solar cells: the birth of a new era in photovoltaics. ACS Energy Lett 2(4):822–830CrossRef Green MA, Ho-Baillie A (2017) Perovskite solar cells: the birth of a new era in photovoltaics. ACS Energy Lett 2(4):822–830CrossRef
4.
Zurück zum Zitat Kojima A, Teshima K, Shirai Y, Miyasaka T (2009) Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc 131:6050–6051CrossRef Kojima A, Teshima K, Shirai Y, Miyasaka T (2009) Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc 131:6050–6051CrossRef
5.
Zurück zum Zitat Mujahid M, Chen C, Zhang J, Li C, Duan Y (2021) Recent advances in semitransparent perovskite solar cells. InfoMat 3(1):101–124CrossRef Mujahid M, Chen C, Zhang J, Li C, Duan Y (2021) Recent advances in semitransparent perovskite solar cells. InfoMat 3(1):101–124CrossRef
7.
Zurück zum Zitat Abbas M, Zeng L, Guo F, Rauf M, Yuan XC, Cai B (2020) A critical review on crystal growth techniques for scalable deposition of photovoltaic perovskite thin films. Materials 13(21):4851CrossRef Abbas M, Zeng L, Guo F, Rauf M, Yuan XC, Cai B (2020) A critical review on crystal growth techniques for scalable deposition of photovoltaic perovskite thin films. Materials 13(21):4851CrossRef
8.
Zurück zum Zitat Mehdizadeh-Rad H, Mehdizadeh-Rad F, Zhu F, Singh J (2021) Heat mitigation in perovskite solar cells: the role of grain boundaries. Sol Energy Mater Sol Cells 220:110837CrossRef Mehdizadeh-Rad H, Mehdizadeh-Rad F, Zhu F, Singh J (2021) Heat mitigation in perovskite solar cells: the role of grain boundaries. Sol Energy Mater Sol Cells 220:110837CrossRef
9.
Zurück zum Zitat Wu F, Pathak R, Qiao Q (2021) Origin and alleviation of JV hysteresis in perovskite solar cells: a short review. Catal Today 374:86–101CrossRef Wu F, Pathak R, Qiao Q (2021) Origin and alleviation of JV hysteresis in perovskite solar cells: a short review. Catal Today 374:86–101CrossRef
10.
Zurück zum Zitat Chen Y, Yang X, Liu P, Wang W, Ran R, Zhou W, Shao Z (2021) Improving moisture/thermal stability and efficiency of CH3NH3PbI3-based perovskite solar cells via gentle butyl acrylate additive strategy. Solar RRL 5(3):2000621CrossRef Chen Y, Yang X, Liu P, Wang W, Ran R, Zhou W, Shao Z (2021) Improving moisture/thermal stability and efficiency of CH3NH3PbI3-based perovskite solar cells via gentle butyl acrylate additive strategy. Solar RRL 5(3):2000621CrossRef
11.
Zurück zum Zitat Lin L, Jones TW, Yang TCJ, Duffy NW, Li J, Zhao L, Chi B, Wang X, Wilson GJ (2021) Inorganic electron transport materials in perovskite solar cells. Adv Func Mater 31(5):2008300CrossRef Lin L, Jones TW, Yang TCJ, Duffy NW, Li J, Zhao L, Chi B, Wang X, Wilson GJ (2021) Inorganic electron transport materials in perovskite solar cells. Adv Func Mater 31(5):2008300CrossRef
12.
Zurück zum Zitat Elsmani MI, Fatima N, Jallorina MPA, Sepeai S, Su’ait MS, Ahmad Ludin N, Mat Teridi MA, Sopian K, Ibrahim MA (2021) Recent issues and configuration factors in perovskite-silicon tandem solar cells towards large scaling production. Nanomaterials 11(12):3186CrossRef Elsmani MI, Fatima N, Jallorina MPA, Sepeai S, Su’ait MS, Ahmad Ludin N, Mat Teridi MA, Sopian K, Ibrahim MA (2021) Recent issues and configuration factors in perovskite-silicon tandem solar cells towards large scaling production. Nanomaterials 11(12):3186CrossRef
13.
Zurück zum Zitat Yang J, Xu J, Zhang Q, Xue Z, Liu H, Qin R, Zhai H, Yuan M (2020) An efficient and stable inverted perovskite solar cell involving inorganic charge transport layers without a high temperature procedure. RSC Adv 10(32):18608–18613CrossRef Yang J, Xu J, Zhang Q, Xue Z, Liu H, Qin R, Zhai H, Yuan M (2020) An efficient and stable inverted perovskite solar cell involving inorganic charge transport layers without a high temperature procedure. RSC Adv 10(32):18608–18613CrossRef
14.
Zurück zum Zitat Tara A, Bharti V, Sharma S, Gupta R (2022) Computational approach to explore suitable charge transport layers for all inorganic CsGeI3 perovskite solar cells. Opt Mater 128:112403CrossRef Tara A, Bharti V, Sharma S, Gupta R (2022) Computational approach to explore suitable charge transport layers for all inorganic CsGeI3 perovskite solar cells. Opt Mater 128:112403CrossRef
15.
Zurück zum Zitat Sutherland LJ, Weerasinghe HC, Simon GP (2021) A review on emerging barrier materials and encapsulation strategies for flexible perovskite and organic photovoltaics. Adv Energy Mater 11(34):2101383CrossRef Sutherland LJ, Weerasinghe HC, Simon GP (2021) A review on emerging barrier materials and encapsulation strategies for flexible perovskite and organic photovoltaics. Adv Energy Mater 11(34):2101383CrossRef
16.
Zurück zum Zitat Sebastian V, Kurian J (2021) Simulation and optimization studies on CsPbI3 based inorganic perovskite solar cells. Sol Energy 221:99–108CrossRef Sebastian V, Kurian J (2021) Simulation and optimization studies on CsPbI3 based inorganic perovskite solar cells. Sol Energy 221:99–108CrossRef
17.
Zurück zum Zitat Chen M, Wang J, Yin F, Du Z, Belfiore LA, Tang J (2021) Strategically integrating quantum dots into organic and perovskite solar cells. J Mater Chem A 9(8):4505–4527CrossRef Chen M, Wang J, Yin F, Du Z, Belfiore LA, Tang J (2021) Strategically integrating quantum dots into organic and perovskite solar cells. J Mater Chem A 9(8):4505–4527CrossRef
18.
Zurück zum Zitat Jin M, Li H, Lou Q, Du Q, Huang Q, Shen Z, Li F, Chen C (2022) Toward high-efficiency stable 2D/3D perovskite solar cells by incorporating multifunctional CNT:TiO2 additives into 3D perovskite layer. EcoMat 4(2):e12166CrossRef Jin M, Li H, Lou Q, Du Q, Huang Q, Shen Z, Li F, Chen C (2022) Toward high-efficiency stable 2D/3D perovskite solar cells by incorporating multifunctional CNT:TiO2 additives into 3D perovskite layer. EcoMat 4(2):e12166CrossRef
19.
Zurück zum Zitat Valadi K, Gharibi S, Taheri-Ledari R, Akin S, Maleki A, Shalan AE (2021) Metal oxide electron transport materials for perovskite solar cells: a review. Environ Chem Lett 19(3):2185–2207CrossRef Valadi K, Gharibi S, Taheri-Ledari R, Akin S, Maleki A, Shalan AE (2021) Metal oxide electron transport materials for perovskite solar cells: a review. Environ Chem Lett 19(3):2185–2207CrossRef
20.
Zurück zum Zitat Chen C, Zhai Y, Li F, Tan F, Yue G, Zhang W, Wang M (2017) High efficiency CH3NH3PbI3:CdS perovskite solar cells with CuInS2 as the hole transporting layer. J Power Sources 341:396–403CrossRef Chen C, Zhai Y, Li F, Tan F, Yue G, Zhang W, Wang M (2017) High efficiency CH3NH3PbI3:CdS perovskite solar cells with CuInS2 as the hole transporting layer. J Power Sources 341:396–403CrossRef
21.
Zurück zum Zitat Guo M, Li F, Ling L, Chen C (2017) Electrochemical and atomic force microscopy investigations of the effect of CdS on the local electrical properties of CH3NH3PbI3:CdS perovskite solar cells. J Mater Chem C 5(46):12112–12120CrossRef Guo M, Li F, Ling L, Chen C (2017) Electrochemical and atomic force microscopy investigations of the effect of CdS on the local electrical properties of CH3NH3PbI3:CdS perovskite solar cells. J Mater Chem C 5(46):12112–12120CrossRef
22.
Zurück zum Zitat Zheng J, Zhu L, Shen Z, Li F, Ling L, Li H, Chen C (2022) Effects of the incorporation amounts of CdS and Cd(SCN2H4)2Cl2 on the performance of perovskite solar cells. Int J Miner Metall Mater 29(2):283–291CrossRef Zheng J, Zhu L, Shen Z, Li F, Ling L, Li H, Chen C (2022) Effects of the incorporation amounts of CdS and Cd(SCN2H4)2Cl2 on the performance of perovskite solar cells. Int J Miner Metall Mater 29(2):283–291CrossRef
23.
Zurück zum Zitat Zhu L, Chen C, Li F, Shen Z, Weng Y, Huang Q, Wang M (2019) Enhancing the efficiency and stability of perovskite solar cells by incorporating CdS and Cd(SCN2H4)2Cl2 into the CH3NH3PbI3 active layer. J Mater Chem A 7(3):1124–1137CrossRef Zhu L, Chen C, Li F, Shen Z, Weng Y, Huang Q, Wang M (2019) Enhancing the efficiency and stability of perovskite solar cells by incorporating CdS and Cd(SCN2H4)2Cl2 into the CH3NH3PbI3 active layer. J Mater Chem A 7(3):1124–1137CrossRef
24.
Zurück zum Zitat Kim H, Lee KS, Paik MJ, Lee DY, Lee SU, Choi E, Yun JS, Seok SI (2022) Polymethyl methacrylate as an interlayer between the halide perovskite and copper phthalocyanine layers for stable and efficient perovskite solar cells. Adv Funct Mater 32(13):2110473CrossRef Kim H, Lee KS, Paik MJ, Lee DY, Lee SU, Choi E, Yun JS, Seok SI (2022) Polymethyl methacrylate as an interlayer between the halide perovskite and copper phthalocyanine layers for stable and efficient perovskite solar cells. Adv Funct Mater 32(13):2110473CrossRef
25.
Zurück zum Zitat Zhao Y, Heumueller T, Zhang J, Luo J, Kasian O, Langner S, Kupfer C, Liu B, Zhong Y, Elia J, Osvet A, A. (2022) A bilayer conducting polymer structure for planar perovskite solar cells with over 1,400 hours operational stability at elevated temperatures. Nat. Energy 7(2):144–152CrossRef Zhao Y, Heumueller T, Zhang J, Luo J, Kasian O, Langner S, Kupfer C, Liu B, Zhong Y, Elia J, Osvet A, A. (2022) A bilayer conducting polymer structure for planar perovskite solar cells with over 1,400 hours operational stability at elevated temperatures. Nat. Energy 7(2):144–152CrossRef
26.
Zurück zum Zitat Cho SH, Byeon J, Jeong K, Hwang J, Lee H, Jang J, Lee J, Kim T, Kim K, Choi M, Lee YS (2021) Investigation of defect-tolerant perovskite solar cells with long-term stability via controlling the self-doping effect. Adv Energy Mater 11(17):2100555CrossRef Cho SH, Byeon J, Jeong K, Hwang J, Lee H, Jang J, Lee J, Kim T, Kim K, Choi M, Lee YS (2021) Investigation of defect-tolerant perovskite solar cells with long-term stability via controlling the self-doping effect. Adv Energy Mater 11(17):2100555CrossRef
27.
Zurück zum Zitat Altinkaya C, Aydin E, Ugur E, Isikgor FH, Subbiah AS, De Bastiani M, Liu J, Babayigit A, Allen TG, Laquai F, Yildiz A (2021) Tin oxide electron-selective layers for efficient, stable, and scalable perovskite solar cells. Adv Mater 33(15):2005504CrossRef Altinkaya C, Aydin E, Ugur E, Isikgor FH, Subbiah AS, De Bastiani M, Liu J, Babayigit A, Allen TG, Laquai F, Yildiz A (2021) Tin oxide electron-selective layers for efficient, stable, and scalable perovskite solar cells. Adv Mater 33(15):2005504CrossRef
28.
Zurück zum Zitat Salem A, Saion E, Al-Hada NM, Kamari HM, Shaari AH, Radiman S (2017) Simple synthesis of ZnSe nanoparticles by thermal treatment and their characterization. Results Phys 7:1175–1180CrossRef Salem A, Saion E, Al-Hada NM, Kamari HM, Shaari AH, Radiman S (2017) Simple synthesis of ZnSe nanoparticles by thermal treatment and their characterization. Results Phys 7:1175–1180CrossRef
29.
Zurück zum Zitat Etgar L, Gao P, Xue Z, Peng Q, Chandiran AK, Liu B, Nazeeruddin MK, Gratzel M (2012) Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. J Am Chem Soc 134(42):17396–17399CrossRef Etgar L, Gao P, Xue Z, Peng Q, Chandiran AK, Liu B, Nazeeruddin MK, Gratzel M (2012) Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. J Am Chem Soc 134(42):17396–17399CrossRef
30.
Zurück zum Zitat Dang Y, Liu Y, Sun Y, Yuan D, Liu X, Lu W, Liu G, Xia H, Tao X (2015) Bulk crystal growth of hybrid perovskite material CH3NH3PbI3. CrystEngComm 17(3):665–670CrossRef Dang Y, Liu Y, Sun Y, Yuan D, Liu X, Lu W, Liu G, Xia H, Tao X (2015) Bulk crystal growth of hybrid perovskite material CH3NH3PbI3. CrystEngComm 17(3):665–670CrossRef
31.
Zurück zum Zitat Liu Z, He T, Wang H, Song X, Liu H, Yang J, Liu K, Ma KH (2017) Improving the stability of the perovskite solar cells by V2O5 modified transport layer film. RSC Adv 7(30):18456–18465CrossRef Liu Z, He T, Wang H, Song X, Liu H, Yang J, Liu K, Ma KH (2017) Improving the stability of the perovskite solar cells by V2O5 modified transport layer film. RSC Adv 7(30):18456–18465CrossRef
32.
Zurück zum Zitat Tian S, Li J, Li S, Bu T, Mo Y, Wang S, Li W, Huang F (2019) A facile green solvent engineering for up-scaling perovskite solar cell modules. Sol Energy 183:386–391CrossRef Tian S, Li J, Li S, Bu T, Mo Y, Wang S, Li W, Huang F (2019) A facile green solvent engineering for up-scaling perovskite solar cell modules. Sol Energy 183:386–391CrossRef
33.
Zurück zum Zitat Senthilkumar K, Kalaivani T, Kanagesan S, Balasubramanian V, Balakrishnan J (2013) Wurtzite ZnSe quantum dots: synthesis, characterization and PL properties. J Mater Sci: Mater Electron 24(2):692–696 Senthilkumar K, Kalaivani T, Kanagesan S, Balasubramanian V, Balakrishnan J (2013) Wurtzite ZnSe quantum dots: synthesis, characterization and PL properties. J Mater Sci: Mater Electron 24(2):692–696
34.
Zurück zum Zitat Pradhan N, Goorskey D, Thessing J, Peng X (2005) An alternative of CdSe nanocrystal emitters: pure and tunable impurity emissions in ZnSe nanocrystals. J Am Chem Soc 127(50):17586–17587CrossRef Pradhan N, Goorskey D, Thessing J, Peng X (2005) An alternative of CdSe nanocrystal emitters: pure and tunable impurity emissions in ZnSe nanocrystals. J Am Chem Soc 127(50):17586–17587CrossRef
35.
Zurück zum Zitat Zhou S, Zhang W, Lin P, Tian L, Li X, Jiang Y, Du L, Zhou X, Wen F, Duan G, Yu L (2021) Controllable perovskite crystallization via platelet-like PbI2 films from water processing for efficient perovskite solar cells. J Alloys Compd 885:160900CrossRef Zhou S, Zhang W, Lin P, Tian L, Li X, Jiang Y, Du L, Zhou X, Wen F, Duan G, Yu L (2021) Controllable perovskite crystallization via platelet-like PbI2 films from water processing for efficient perovskite solar cells. J Alloys Compd 885:160900CrossRef
36.
Zurück zum Zitat Yan W, Li S, Zhang Y, Yao Q (2010) Effects of dipole moment and temperature on the interaction dynamics of titania nanoparticles during agglomeration. J Phys Chem C 114:10755–10760CrossRef Yan W, Li S, Zhang Y, Yao Q (2010) Effects of dipole moment and temperature on the interaction dynamics of titania nanoparticles during agglomeration. J Phys Chem C 114:10755–10760CrossRef
38.
Zurück zum Zitat Afzaal M, Yates HM (2017) Growth patterns and properties of aerosol-assisted chemical vapor deposition of CH3NH3PbI3 films in a single step. Surf Coat Technol 321:336–340CrossRef Afzaal M, Yates HM (2017) Growth patterns and properties of aerosol-assisted chemical vapor deposition of CH3NH3PbI3 films in a single step. Surf Coat Technol 321:336–340CrossRef
39.
Zurück zum Zitat Ahmad S, Abbas H, Khan MB, Nagal V, Hafiz AK, Khan ZH (2021) ZnO for stable and efficient perovskite bulk heterojunction solar cell fabricated under ambient atmosphere. Sol Energy 216:164–170CrossRef Ahmad S, Abbas H, Khan MB, Nagal V, Hafiz AK, Khan ZH (2021) ZnO for stable and efficient perovskite bulk heterojunction solar cell fabricated under ambient atmosphere. Sol Energy 216:164–170CrossRef
40.
Zurück zum Zitat Manzoor S, Zhengshan JY, Ali A, Ali W, Bush KA, Palmstrom AF, Bent SF, McGehee MD, Holman ZC (2017) Improved light management in planar silicon and perovskite solar cells using PDMS scattering layer. Sol Energy Mater Sol Cells 173:59–65CrossRef Manzoor S, Zhengshan JY, Ali A, Ali W, Bush KA, Palmstrom AF, Bent SF, McGehee MD, Holman ZC (2017) Improved light management in planar silicon and perovskite solar cells using PDMS scattering layer. Sol Energy Mater Sol Cells 173:59–65CrossRef
41.
Zurück zum Zitat Liu Z, He T, Wang H, Jain SM, Liu K, Yang J, Zhang N, Liu H, Yuan M (2018) Improvement in the performance of inverted planar perovskite solar cells via the CH3NH3PbI3-xClx:ZnO bulk heterojunction. J Power Sources 401:303–311CrossRef Liu Z, He T, Wang H, Jain SM, Liu K, Yang J, Zhang N, Liu H, Yuan M (2018) Improvement in the performance of inverted planar perovskite solar cells via the CH3NH3PbI3-xClx:ZnO bulk heterojunction. J Power Sources 401:303–311CrossRef
42.
Zurück zum Zitat Wang L, McCleese C, Kovalsky A, Zhao Y, Burda C (2014) Femtosecond time-resolved transient absorption spectroscopy of CH3NH3PbI3 perovskite films: evidence for passivation effect of PbI2. J Am Chem Soc 136(35):12205–12208CrossRef Wang L, McCleese C, Kovalsky A, Zhao Y, Burda C (2014) Femtosecond time-resolved transient absorption spectroscopy of CH3NH3PbI3 perovskite films: evidence for passivation effect of PbI2. J Am Chem Soc 136(35):12205–12208CrossRef
43.
Zurück zum Zitat Mahmoudi T, Wang Y, Hahn YB (2021) Highly stable perovskite solar cells based on perovskite/NiO-graphene composites and NiO interface with 25.9 mA/cm2 photocurrent density and 20.8% efficiency. Nano Energy 79:105452CrossRef Mahmoudi T, Wang Y, Hahn YB (2021) Highly stable perovskite solar cells based on perovskite/NiO-graphene composites and NiO interface with 25.9 mA/cm2 photocurrent density and 20.8% efficiency. Nano Energy 79:105452CrossRef
44.
Zurück zum Zitat Yazdi MRA, Rahimzadeh A, Clouqi Z, Miao Y, Eslamian M (2018) Viscosity, surface tension, density and contact angle of PbI2, PbCl2 and methyl ammonium lead halide perovskite solutions used in perovskite solar cells. AIP Adv 8:025109CrossRef Yazdi MRA, Rahimzadeh A, Clouqi Z, Miao Y, Eslamian M (2018) Viscosity, surface tension, density and contact angle of PbI2, PbCl2 and methyl ammonium lead halide perovskite solutions used in perovskite solar cells. AIP Adv 8:025109CrossRef
45.
Zurück zum Zitat Bi D, Gao P, Scopelliti R, Oveisi E, Luo J, Grätzel M, Hagfeldt A, Nazeeruddin MK (2016) High-performance perovskite solar cells with enhanced environmental stability based on amphiphile-modified CH3NH3PbI3. Adv Mater 28(15):2910–2915CrossRef Bi D, Gao P, Scopelliti R, Oveisi E, Luo J, Grätzel M, Hagfeldt A, Nazeeruddin MK (2016) High-performance perovskite solar cells with enhanced environmental stability based on amphiphile-modified CH3NH3PbI3. Adv Mater 28(15):2910–2915CrossRef
46.
Zurück zum Zitat Stranks SD, Eperon GE, Grancini G, Menelaou C, Alcocer MJ, Leijtens T, Herz LM, Petrozza A, Snaith HJ (2013) Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342(6156):341–344CrossRef Stranks SD, Eperon GE, Grancini G, Menelaou C, Alcocer MJ, Leijtens T, Herz LM, Petrozza A, Snaith HJ (2013) Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342(6156):341–344CrossRef
47.
Zurück zum Zitat Chen H, Ding X, Pan X, Hayat T, Alsaedi A, Ding Y, Dai S (2018) Comprehensive studies of air-brush spray deposition used in fabricating high-efficiency CH3NH3PbI3 perovskite solar cells: combining theories with practices. J Power Sources 402:82–90CrossRef Chen H, Ding X, Pan X, Hayat T, Alsaedi A, Ding Y, Dai S (2018) Comprehensive studies of air-brush spray deposition used in fabricating high-efficiency CH3NH3PbI3 perovskite solar cells: combining theories with practices. J Power Sources 402:82–90CrossRef
48.
Zurück zum Zitat Xu X, Sun Y, He D, Liang Z, Liu G, Xu S, Li Z, Zhu L, Pan X (2021) Grain size control for high-performance formamidinium-based perovskite solar cells via suppressing heterogenous nucleation. J Mater Chem C 9(1):208–213CrossRef Xu X, Sun Y, He D, Liang Z, Liu G, Xu S, Li Z, Zhu L, Pan X (2021) Grain size control for high-performance formamidinium-based perovskite solar cells via suppressing heterogenous nucleation. J Mater Chem C 9(1):208–213CrossRef
49.
Zurück zum Zitat Zhang S, Liu Z, Zhang W, Jiang Z, Chen W, Chen R, Huang Y, Yang Z, Zhang Y, Han L, Chen W (2020) Barrier designs in perovskite solar cells for long-term stability. Adv Energy Mater 10(35):2001610CrossRef Zhang S, Liu Z, Zhang W, Jiang Z, Chen W, Chen R, Huang Y, Yang Z, Zhang Y, Han L, Chen W (2020) Barrier designs in perovskite solar cells for long-term stability. Adv Energy Mater 10(35):2001610CrossRef
50.
Zurück zum Zitat Ahmad AA, Al-Bataineh QM, Alsaad AM, Samara TO, Al-izzy KA (2020) Optical properties of hydrophobic ZnO nano-structure based on antireflective coatings of ZnO/TiO2/SiO2 thin films. Physica B Condens Matter 593:412263CrossRef Ahmad AA, Al-Bataineh QM, Alsaad AM, Samara TO, Al-izzy KA (2020) Optical properties of hydrophobic ZnO nano-structure based on antireflective coatings of ZnO/TiO2/SiO2 thin films. Physica B Condens Matter 593:412263CrossRef
51.
Zurück zum Zitat Han J, Kwon H, Kim E, Kim DW, Son HJ, Kim DH (2020) Interfacial engineering of a ZnO electron transporting layer using self-assembled monolayers for high performance and stable perovskite solar cells. J Mater Chem A 8(4):2105–2113CrossRef Han J, Kwon H, Kim E, Kim DW, Son HJ, Kim DH (2020) Interfacial engineering of a ZnO electron transporting layer using self-assembled monolayers for high performance and stable perovskite solar cells. J Mater Chem A 8(4):2105–2113CrossRef
52.
Zurück zum Zitat Xia Y, Yan G, Lin J (2021) Review on tailoring PEDOT:PSS layer for improved device stability of perovskite solar cells. Nanomaterials 11(11):3119CrossRef Xia Y, Yan G, Lin J (2021) Review on tailoring PEDOT:PSS layer for improved device stability of perovskite solar cells. Nanomaterials 11(11):3119CrossRef
53.
Zurück zum Zitat Abbas H, Ahmad S, Parvaz M, Khan MB, Khan MS, Khan A, Alshahrie A, Khan ZH (2022) Surface optimization of metal halide perovskite solar cells using ZnS nanorods. J Mater Sci: Mater Electron 33(27):21576–21587 Abbas H, Ahmad S, Parvaz M, Khan MB, Khan MS, Khan A, Alshahrie A, Khan ZH (2022) Surface optimization of metal halide perovskite solar cells using ZnS nanorods. J Mater Sci: Mater Electron 33(27):21576–21587
54.
Zurück zum Zitat Liu Z, Wang L, Xie X, Xu C, Tang J, Li W (2022) High-performance Ruddlesden-Popper two-dimensional perovskite solar cells with solution processed inorganic charge transport layers. Phys Chem Chem Phys 24:15912–15919 Liu Z, Wang L, Xie X, Xu C, Tang J, Li W (2022) High-performance Ruddlesden-Popper two-dimensional perovskite solar cells with solution processed inorganic charge transport layers. Phys Chem Chem Phys 24:15912–15919
55.
Zurück zum Zitat Hoseinpour V, Shariatinia Z, Mahmoodpour S (2022) Surface passivation boosted performances of perovskite solar cells assembled under ambient conditions. Opt Mater 131:112746CrossRef Hoseinpour V, Shariatinia Z, Mahmoodpour S (2022) Surface passivation boosted performances of perovskite solar cells assembled under ambient conditions. Opt Mater 131:112746CrossRef
56.
Zurück zum Zitat Latypova AF, Maskaev AV, Gutsev LG, Emelianov NA, Kuznetsov IE, Kuznetsov PM, Nikitenko SL, Baskakova YV, Akkuratov AV, Komissarova EA, Frolova LA (2022) Side chain engineering and film uniformity: two key parameters for the rational design of dopant-free polymeric hole transport materials for efficient and stable perovskite solar cells. Mater Today Chem 26:101218CrossRef Latypova AF, Maskaev AV, Gutsev LG, Emelianov NA, Kuznetsov IE, Kuznetsov PM, Nikitenko SL, Baskakova YV, Akkuratov AV, Komissarova EA, Frolova LA (2022) Side chain engineering and film uniformity: two key parameters for the rational design of dopant-free polymeric hole transport materials for efficient and stable perovskite solar cells. Mater Today Chem 26:101218CrossRef
Metadaten
Titel
Reduction of extrinsic defects in ZnSe:perovskite composites based solar devices
verfasst von
Hasan Abbas
Mohammad Salman Khan
Sultan Ahmad
M. Parvaz
Mohd. Bilal Khan
Asim Khan
Ahmad Alshahrie
Zishan H. Khan
Publikationsdatum
01.12.2022
Verlag
Springer Netherlands
Erschienen in
Journal of Nanoparticle Research / Ausgabe 12/2022
Print ISSN: 1388-0764
Elektronische ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-022-05644-8

Weitere Artikel der Ausgabe 12/2022

Journal of Nanoparticle Research 12/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.