Skip to main content

2022 | OriginalPaper | Buchkapitel

Reduction of Granular Material Losses in a Vortex Chamber Supercharger Drainage Channel

verfasst von : Andrii Rogovyi, Volodymyr Korohodskyi, Artem Neskorozhenyi, Iryna Hrechka, Serhii Khovanskyi

Erschienen in: Advances in Design, Simulation and Manufacturing V

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Increasing the reliability and durability of superchargers in pneumatic and hydraulic transport is possible due to vortex chamber jet superchargers. Their efficiency significantly exceeds pumping bulk mediums in pneumatic transport using direct-flow jet ejectors. However, the pumped medium losses in the vortex chamber supercharger drainage channel do not allow it to be widely used in such systems. Based on experimental and numerical studies, the influence of the density of the granular material on the losses in the drainage channel has been determined. Mathematical modeling was done by solving the Reynolds-averaged Navier-Stokes (RANS) equations with the Shear Stress Transport (SST) turbulence model. Rational densities of the medium can be varied by changing the vortex chamber height or swirling the inlet flow using a swirler. The design changes are explained by the kinematic features of the solid particle motion. If the vortex chamber height is small, then the particle does not have time to start rotating near the chamber axis and enters the supercharger drainage channel. The absence of the drainage channel in the design will lead to the outlet pressure decrease. As a result of the research, the granular material losses in the supercharger drainage channel have been reduced by 50%, with a twofold increase in the swirl number.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Rogovyi, A., Korohodskyi, V., Khovanskyi, S., Hrechka, I., Medvediev, Y.: Optimal design of vortex chamber pump. J. Phys. Conf. Ser. 1741(1), 012018 (2021)CrossRef Rogovyi, A., Korohodskyi, V., Khovanskyi, S., Hrechka, I., Medvediev, Y.: Optimal design of vortex chamber pump. J. Phys. Conf. Ser. 1741(1), 012018 (2021)CrossRef
2.
Zurück zum Zitat Noon, A.A, Kim, M.H.: Erosion wear on centrifugal pump casing due to slurry flow. Wear 364, 103e11 (2016) Noon, A.A, Kim, M.H.: Erosion wear on centrifugal pump casing due to slurry flow. Wear 364, 103e11 (2016)
3.
Zurück zum Zitat Voloshina, A., Panchenko, A., Titova, O., Panchenko, I.: Changes in the dynamics of the output characteristics of mechatronic systems with planetary hydraulic motors. J. Phys. Conf. Ser. 1741, 012045 (2021)CrossRef Voloshina, A., Panchenko, A., Titova, O., Panchenko, I.: Changes in the dynamics of the output characteristics of mechatronic systems with planetary hydraulic motors. J. Phys. Conf. Ser. 1741, 012045 (2021)CrossRef
4.
Zurück zum Zitat Kondus, V.Y., Gusak, O.G., Yevtushenko, J.V.: Investigation of the operating process of a high-pressure centrifugal pump with taking into account of improving the process of fluid flowing in its flowing part. J. Phys. Conf. Ser. 1741(1), 012012 (2021)CrossRef Kondus, V.Y., Gusak, O.G., Yevtushenko, J.V.: Investigation of the operating process of a high-pressure centrifugal pump with taking into account of improving the process of fluid flowing in its flowing part. J. Phys. Conf. Ser. 1741(1), 012012 (2021)CrossRef
5.
Zurück zum Zitat Arhun, S., Migal, V., Hnatov, A., Hnatova, H., Ulyanets, O.: System approach to evaluating the traction electric motor quality. EAI Endorsed Trans. Energy Web 7(27), 1–9 (2020) Arhun, S., Migal, V., Hnatov, A., Hnatova, H., Ulyanets, O.: System approach to evaluating the traction electric motor quality. EAI Endorsed Trans. Energy Web 7(27), 1–9 (2020)
6.
Zurück zum Zitat Evdokimov, O.A., Piralishvili, S.A., Veretennikov, S.V., Elkes, A.A.: Experimental study of cleaning aircraft GTE fuel injectors using a vortex ejector. J. Phys. Conf. Ser. 925(1), 012027 (2017)CrossRef Evdokimov, O.A., Piralishvili, S.A., Veretennikov, S.V., Elkes, A.A.: Experimental study of cleaning aircraft GTE fuel injectors using a vortex ejector. J. Phys. Conf. Ser. 925(1), 012027 (2017)CrossRef
7.
Zurück zum Zitat Rogovyi, A., Korohodskyi, V., Medvediev, Y.: Influence of Bingham fluid viscosity on energy performances of a vortex chamber pump. Energy 218, 119432 (2021)CrossRef Rogovyi, A., Korohodskyi, V., Medvediev, Y.: Influence of Bingham fluid viscosity on energy performances of a vortex chamber pump. Energy 218, 119432 (2021)CrossRef
8.
Zurück zum Zitat Merzliakov, I., Pavlenko, I., Chekh, O., Sharapov, S., Ivanov, V.: Mathematical modeling of operating process and technological features for designing the vortex type liquid-vapor jet apparatus. In: Ivanov, V., et al. (eds.) DSMIE 2019. LNME, pp. 613–622. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-22365-6_61 Merzliakov, I., Pavlenko, I., Chekh, O., Sharapov, S., Ivanov, V.: Mathematical modeling of operating process and technological features for designing the vortex type liquid-vapor jet apparatus. In: Ivanov, V., et al. (eds.) DSMIE 2019. LNME, pp. 613–622. Springer, Cham (2020). https://​doi.​org/​10.​1007/​978-3-030-22365-6_​61
10.
Zurück zum Zitat Evdokimov, O.A., Piralishvili, S.A., Veretennikov, S.V., Guryanov, A.I.: CFD simulation of a vortex ejector for use in vacuum applications. J. Phys. Conf. Ser. 1128(1), 012127 (2018) Evdokimov, O.A., Piralishvili, S.A., Veretennikov, S.V., Guryanov, A.I.: CFD simulation of a vortex ejector for use in vacuum applications. J. Phys. Conf. Ser. 1128(1), 012127 (2018)
11.
Zurück zum Zitat Chernetskaya-Beletskaya, N., Rogovyi, A., Shvornikova, A., Baranov, I., Miroshnikova, M., Bragin, N.: Study on the coal-water fuel pipeline transportation taking into account the granulometric composition parameters. Int. J. Eng. Technol. 7(4.3), 240–245 (2018) Chernetskaya-Beletskaya, N., Rogovyi, A., Shvornikova, A., Baranov, I., Miroshnikova, M., Bragin, N.: Study on the coal-water fuel pipeline transportation taking into account the granulometric composition parameters. Int. J. Eng. Technol. 7(4.3), 240–245 (2018)
12.
Zurück zum Zitat Panchenko, A, Voloshina, A., Titova, O., Panchenko, I.: The influence of the design parameters of the rotors of the planetary hydraulic motor on the change in the output characteristics of the mechatronic system. J. Phys. Conf. Ser. 1741, 012027 (2021) Panchenko, A, Voloshina, A., Titova, O., Panchenko, I.: The influence of the design parameters of the rotors of the planetary hydraulic motor on the change in the output characteristics of the mechatronic system. J. Phys. Conf. Ser. 1741, 012027 (2021)
13.
Zurück zum Zitat Voloshina, A., Panchenko, A., Titova, O., Milaeva, I., Pastushenko, A.: Prediction of changes in the output characteristics of the planetary hydraulic motor. In: Tonkonogyi, V., et al. (eds.) InterPartner 2020. LNME, pp. 744–754. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68014-5_72 Voloshina, A., Panchenko, A., Titova, O., Milaeva, I., Pastushenko, A.: Prediction of changes in the output characteristics of the planetary hydraulic motor. In: Tonkonogyi, V., et al. (eds.) InterPartner 2020. LNME, pp. 744–754. Springer, Cham (2021). https://​doi.​org/​10.​1007/​978-3-030-68014-5_​72
14.
Zurück zum Zitat Pavlenko, I., Ivanov, V., Kuric, I., Gusak, O., Liaposhchenko, O.: Ensuring vibration reliability of turbopump units using artificial neural networks. In: Trojanowska, J., Ciszak, O., Machado, J.M., Pavlenko, I. (eds.) MANUFACTURING 2019. LNME, pp. 165–175. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-18715-6_14CrossRef Pavlenko, I., Ivanov, V., Kuric, I., Gusak, O., Liaposhchenko, O.: Ensuring vibration reliability of turbopump units using artificial neural networks. In: Trojanowska, J., Ciszak, O., Machado, J.M., Pavlenko, I. (eds.) MANUFACTURING 2019. LNME, pp. 165–175. Springer, Cham (2019). https://​doi.​org/​10.​1007/​978-3-030-18715-6_​14CrossRef
16.
Zurück zum Zitat Sokolov, V., Porkuian, O., Krol, O., Stepanova, O.: Design calculation of automatic rotary motion electrohydraulic drive for technological equipment. In: Ivanov, V., Trojanowska, J., Pavlenko, I., Zajac, J., Peraković, D. (eds.) DSMIE 2021. LNME, pp. 133–142. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77719-7_14CrossRef Sokolov, V., Porkuian, O., Krol, O., Stepanova, O.: Design calculation of automatic rotary motion electrohydraulic drive for technological equipment. In: Ivanov, V., Trojanowska, J., Pavlenko, I., Zajac, J., Peraković, D. (eds.) DSMIE 2021. LNME, pp. 133–142. Springer, Cham (2021). https://​doi.​org/​10.​1007/​978-3-030-77719-7_​14CrossRef
17.
Zurück zum Zitat Voloshina, A., Panchenko, A., Titova, O., Pashchenko, V., Zasiadko, A.: Experimental studies of a throughput of the distribution systems of planetary hydraulic motors. IOP Conf. Ser. Mater. Sci. Eng. 1021(1), 012054 (2021)CrossRef Voloshina, A., Panchenko, A., Titova, O., Pashchenko, V., Zasiadko, A.: Experimental studies of a throughput of the distribution systems of planetary hydraulic motors. IOP Conf. Ser. Mater. Sci. Eng. 1021(1), 012054 (2021)CrossRef
18.
Zurück zum Zitat Marchenko, A., Tkachuk, M.A., Kravchenko, S., Tkachuk, M.M., Parsadanov, I.: Experimental tests of discrete strengthened elements of machine-building structures. In: Tonkonogyi, V., et al. (eds.) InterPartner 2019. LNME, pp. 559–569. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-40724-7_57 Marchenko, A., Tkachuk, M.A., Kravchenko, S., Tkachuk, M.M., Parsadanov, I.: Experimental tests of discrete strengthened elements of machine-building structures. In: Tonkonogyi, V., et al. (eds.) InterPartner 2019. LNME, pp. 559–569. Springer, Cham (2020). https://​doi.​org/​10.​1007/​978-3-030-40724-7_​57
19.
Zurück zum Zitat Kirichenko, M.V., Drozdov, A.N., Zaitsev, R.V., Khrypunov, G.S., Drozdova, A.A., Zaitseva, L.V.: Design of electronic devices stress testing system with charging line based impulse generator. In: 2020 IEEE KhPI Week on Advanced Technology (KhPIWeek), pp. 38–42. IEEE (2020) Kirichenko, M.V., Drozdov, A.N., Zaitsev, R.V., Khrypunov, G.S., Drozdova, A.A., Zaitseva, L.V.: Design of electronic devices stress testing system with charging line based impulse generator. In: 2020 IEEE KhPI Week on Advanced Technology (KhPIWeek), pp. 38–42. IEEE (2020)
20.
Zurück zum Zitat Patlins, A., Hnatov, A., Arhun, S. C., Bogdan, D., Dzyubenko, O.: Development of an energy generating platform for converting kinetic energy into electrical energy using the kinematic synthesis of a three-stage multiplier. In: Transport Means-Proceedings of the International Conference, pp. 403–408 (2019) Patlins, A., Hnatov, A., Arhun, S. C., Bogdan, D., Dzyubenko, O.: Development of an energy generating platform for converting kinetic energy into electrical energy using the kinematic synthesis of a three-stage multiplier. In: Transport Means-Proceedings of the International Conference, pp. 403–408 (2019)
21.
Zurück zum Zitat Krol, O., Sokolov, V.: Research of toothed belt transmission with arched teeth. Diagnostyka 21(4), 15–22 (2020)CrossRef Krol, O., Sokolov, V.: Research of toothed belt transmission with arched teeth. Diagnostyka 21(4), 15–22 (2020)CrossRef
22.
Zurück zum Zitat Tkachuk, M.A.: Numerical method for axisymmetric adhesive contact based on Kalker’s variational principle. Eastern-Euro. J. Enterp. Technol. 3(7), 34–41 (2018)CrossRef Tkachuk, M.A.: Numerical method for axisymmetric adhesive contact based on Kalker’s variational principle. Eastern-Euro. J. Enterp. Technol. 3(7), 34–41 (2018)CrossRef
23.
Zurück zum Zitat Hasečić, A., Imamović, J., Bikić, S., Džaferović, E.: Investigation of the contamination influence on the parameters of gas flow through multihole orifice flowmeter. IEEE Trans. Instrum. Measure. 70, 1–8 (2021)CrossRef Hasečić, A., Imamović, J., Bikić, S., Džaferović, E.: Investigation of the contamination influence on the parameters of gas flow through multihole orifice flowmeter. IEEE Trans. Instrum. Measure. 70, 1–8 (2021)CrossRef
24.
Zurück zum Zitat Berberović, E., Bikić, S.: Computational study of flow and heat transfer characteristics of eg-si3n4 nanofluid in laminar flow in a pipe in forced convection regime. Energies 13(1), 74 (2020)CrossRef Berberović, E., Bikić, S.: Computational study of flow and heat transfer characteristics of eg-si3n4 nanofluid in laminar flow in a pipe in forced convection regime. Energies 13(1), 74 (2020)CrossRef
25.
Zurück zum Zitat Brazhenko, V., Mochalin, I.: Numerical simulation and experimental tests of the filter with a rotating cylindrical perforated filter element. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 235(12), 2180–2191 (2021)CrossRef Brazhenko, V., Mochalin, I.: Numerical simulation and experimental tests of the filter with a rotating cylindrical perforated filter element. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 235(12), 2180–2191 (2021)CrossRef
26.
Zurück zum Zitat Krol, O., Porkuian, O., Sokolov, V., Tsankov, P.: Vibration stability of spindle nodes in the zone of tool equipment optimal parameters. Comptes rendus de l’Acade’mie bulgare des Sci. 72(11), 1546–1556 (2019) Krol, O., Porkuian, O., Sokolov, V., Tsankov, P.: Vibration stability of spindle nodes in the zone of tool equipment optimal parameters. Comptes rendus de l’Acade’mie bulgare des Sci. 72(11), 1546–1556 (2019)
27.
28.
Zurück zum Zitat Smirnov, P.E., Menter, F.R.: Sensitization of the SST turbulence model to rotation and curvature by applying the Spalart-Shur correction term. J. Turbomach. 131(4), 041010 (2009)CrossRef Smirnov, P.E., Menter, F.R.: Sensitization of the SST turbulence model to rotation and curvature by applying the Spalart-Shur correction term. J. Turbomach. 131(4), 041010 (2009)CrossRef
29.
Zurück zum Zitat Pavlenko, I., Liaposhchenko, A., Ochowiak, M., Demyanenko, M.: Solving the stationary hydroaeroelasticity problem for dynamic deflection elements of separation devices. Vib. Phys. Syst. 29, 2018026 (2018) Pavlenko, I., Liaposhchenko, A., Ochowiak, M., Demyanenko, M.: Solving the stationary hydroaeroelasticity problem for dynamic deflection elements of separation devices. Vib. Phys. Syst. 29, 2018026 (2018)
30.
Zurück zum Zitat Sommerfeld, M., Sgrott, O.L., Jr., Taborda, M.A., Koullapis, P., Bauer, K., Kassinos, S.: Analysis of flow field and turbulence predictions in a lung model applying RANS and implications for particle deposition. Eur. J. Pharm. Sci. 166, 105959 (2021)CrossRef Sommerfeld, M., Sgrott, O.L., Jr., Taborda, M.A., Koullapis, P., Bauer, K., Kassinos, S.: Analysis of flow field and turbulence predictions in a lung model applying RANS and implications for particle deposition. Eur. J. Pharm. Sci. 166, 105959 (2021)CrossRef
32.
Zurück zum Zitat Appadurai, A., Raghavan, V.: Numerical investigations on particle separation in dynamic separators. Int. J. Numeric. Methods Heat Fluid Flow 30(4), 1677–1688 (2019) Appadurai, A., Raghavan, V.: Numerical investigations on particle separation in dynamic separators. Int. J. Numeric. Methods Heat Fluid Flow 30(4), 1677–1688 (2019)
33.
Zurück zum Zitat Liaposhchenko, O., Pavlenko, I., Monkova, K., Demianenko, М, Starynskyi, O.: Numerical simulation of aeroelastic interaction between gas-liquid flow and deformable elements in modular separation devices. In: Ivanov, V., et al. (eds.) DSMIE 2019. LNME, pp. 765–774. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-22365-6_76 Liaposhchenko, O., Pavlenko, I., Monkova, K., Demianenko, М, Starynskyi, O.: Numerical simulation of aeroelastic interaction between gas-liquid flow and deformable elements in modular separation devices. In: Ivanov, V., et al. (eds.) DSMIE 2019. LNME, pp. 765–774. Springer, Cham (2020). https://​doi.​org/​10.​1007/​978-3-030-22365-6_​76
34.
Zurück zum Zitat Zaitsev, R.V., Khrypunov, G.S., Veselova, N.V., Kirichenko, M.V., Kharchenko, M.M., Zaitseva, L.V.: The cadmium telluride thin films for flexible solar cell received by magnetron dispersion method. J. Nano Electron. Phys. 9(3), 03015 (2017)CrossRef Zaitsev, R.V., Khrypunov, G.S., Veselova, N.V., Kirichenko, M.V., Kharchenko, M.M., Zaitseva, L.V.: The cadmium telluride thin films for flexible solar cell received by magnetron dispersion method. J. Nano Electron. Phys. 9(3), 03015 (2017)CrossRef
35.
Zurück zum Zitat Minakova, K.A., Zaitsev, R.V.: Improving the solar collector base model for PVT system. J. Nano Electron. Phys. 12(4), 04028 (2020)CrossRef Minakova, K.A., Zaitsev, R.V.: Improving the solar collector base model for PVT system. J. Nano Electron. Phys. 12(4), 04028 (2020)CrossRef
Metadaten
Titel
Reduction of Granular Material Losses in a Vortex Chamber Supercharger Drainage Channel
verfasst von
Andrii Rogovyi
Volodymyr Korohodskyi
Artem Neskorozhenyi
Iryna Hrechka
Serhii Khovanskyi
Copyright-Jahr
2022
DOI
https://doi.org/10.1007/978-3-031-06044-1_21

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.