Skip to main content

Alkaline Membrane Fuel Cells, Membranes

  • Reference work entry
  • First Online:
Encyclopedia of Applied Electrochemistry

In this chapter a new type of solid electrolyte membrane for low-temperature fuel cell application, the anion exchange membrane (AEM), is reviewed. The properties, advantages, and challenges of the anion exchange membranes are discussed.

Introduction

Anion exchange membranes (AEMs) are used as solid polymer electrolyte in the alkaline membrane fuel cell (AMFC) technology, also referred to as anion exchange membrane fuel cell (AEMFC). In this relatively novel fuel cell technology, the OH− is being transported from the cathode to the anode through the anion exchange membrane. In other words, the membrane acts as an anion-conducting membrane between both electrodes of the fuel cell.

The fuel cell reactions for an alkaline membrane fuel cell are described below:

$$ {\mathrm{ H}}_2+{2\mathrm{ O}\mathrm{ H}}^{-}\Rightarrow {2\mathrm{ H}}_2\mathrm{ O}+{2\mathrm{ e}}^{-}\kern1em \mathrm{ anode} $$
(1)
$$ \mathrm{ \frac{1}{2}}{\ \mathrm{ O}}_2+{\mathrm{ H}}_2\mathrm{ O}+{2\mathrm{...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dekel DR (2012) Latest advances in alkaline membrane fuel cell (AMFC) technology. In: 3rd Carisma international conference, 3 Sept 2012, Copenhagen. http://www.hotmea.kemi.dtu.dk/upload/institutter/ki/hotmea/carisma%202012/abstracts/dekel%20carisma%202012.pdf. Accessed 16 Dec 2012

  2. Pivovar BS (2006) Alkaline Membrane Fuel Cell Workshop Final Report. http://www1.eere.energy.gov/hydrogenandfuelcells/pdfs/amfc_dec2006_workshop_report.pdf. Accessed 6 Nov 2012

  3. Strathmann H (2004) Ion-exchange membrane separation processes, vol 9, Membrane science and technology series. Elsevier, Amsterdam

    Google Scholar 

  4. Robertson NJ, Kostalik Iv HA, Clark TJ, Mutolo PF, Abruña HD, Coates GW (2010) Tunable high performance cross-linked alkaline anion exchange membranes for fuel cell applications. J Am Chem Soc 132:3400–3404. doi:10.1021/ja908638d

    CAS  Google Scholar 

  5. Yan J, Hickner MA (2010) Anion exchange membranes by bromination of benzylmethyl containing poly(sulfone)s. Macromolecules 43:2349–2356. doi:10.1021/ma902430y

    CAS  Google Scholar 

  6. Varcoe JR, Slade RCT (2005) Prospects for alkaline anion-exchange membranes in low temperature fuel cells. Fuel Cells 5:187–200. doi:10.1002/fuce.200400045

    CAS  Google Scholar 

  7. Yan J, Hickner MA (2009) Efficient synthesis and properties of anion exchange membranes. Polym Preprints 50:272–273

    Google Scholar 

  8. Fang FJ, Yang Y, Lu X, Ye M, Li W, Zhang Y (2012) Cross-linked, ETFE-derived and radiation grafted membranes for anion exchange membrane fuel cell applications. Int J Hydrogen Energy 37:594–602. doi:10.1016/j.ijhydene.2011.09.112

    CAS  Google Scholar 

  9. Agel E, Bouet J, Fauvarque JF (2001) Characterization and use of anionic membranes for alkaline fuel cells. J Power Sources 101:267–274

    CAS  Google Scholar 

  10. Wan Y, Peppley B, Creber KAM, Bui VT, Halliop E (2008) Quaternized-chitosan membranes for possible applications in alkaline fuel cells. J Power Sources 185:183–187

    CAS  Google Scholar 

  11. Xiong Y, Fang J, Zeng QH, Liu QL (2008) Preparation and characterization of cross-linked quaternized poly(vinyl alcohol) membranes for anion exchange membrane fuel cells. J Membrane Sci 311:319–325. doi:10.1016/j.memsci.2007.12.029

    CAS  Google Scholar 

  12. Li L, Wang Y (2005) Quaternized polyethersulfone Cardo anion exchange membranes for direct methanol alkaline fuel cells. J Membrane Sci 262:1–4. doi:10.1016/j.memsci.2005.07.009

    CAS  Google Scholar 

  13. Park JS, Park GG, Park SH, Yoon YG, Kim GS, Lee WY (2007) Development of solid-state alkaline electrolytes for solid alkaline fuel cells. Macromol Symp 249–250:174–182. doi:10.1002/masy.200750329

    Google Scholar 

  14. Tanaka M, Fukasawa K, Nishino E, Yamaguchi S, Yamada K, Tanaka H, Bae B, Miyatake K, Watanabe M (2011) Anion conductive block poly(arylene ether)s: synthesis, properties, and application in alkaline fuel cells. J Am Chem Soc 133:10646–10654. doi:10.1021/ja204166e

    CAS  Google Scholar 

  15. Adams LA, Poynton SD, Tamain C, Slade RCT, Varcoe JR (2008) A carbon dioxide tolerant aqueous-electrolyte-free anion-exchange membrane alkaline fuel cell. ChemSusChem 1:79–81. doi:10.1002/cssc.200700013

    CAS  Google Scholar 

  16. Inaba M, Matsui Y, Saito M, Tasaka A, Fukuta K, Watanabe S, Yanagi H (2011) Effects of carbon dioxide on the performance of anion-exchange membrane fuel cells. Electrochemistry 79:322–325

    CAS  Google Scholar 

  17. Unlu M, Zhou J, Kohl PA (2009) Anion exchange membrane fuel cells: experimental comparison of hydroxide and carbonate conductive ions. Electrochem Solid State Lett 12:B27–B30. doi:10.1149/1.3058999

    CAS  Google Scholar 

  18. Wang Y, Li L, Hu L, Zhuang L, Lu J, Xu B (2003) A feasibility analysis for alkaline membrane direct methanol fuel cell: thermodynamic disadvantages versus kinetic advantages. Electrochem Commun 5:662–666. doi:10.1016/S1388-2481(03)00148-6

    CAS  Google Scholar 

  19. Siroma Z, Watanabe S, Yasuda K, Fukuta K, Yanagi H (2011) Mathematical modeling of the concentration profile of carbonate ions in an anion exchange membrane fuel cell. J Electrochem Soc 158:B682–B689. doi:10.1149/1.3576120

    CAS  Google Scholar 

  20. Kim YS (2010) Resonance-stabilized anion exchange polymer electrolytes. In: Annual merit review and peer evaluation meeting, DOE hydrogen program and vehicle technologies program. http://www.hydrogen.energy.gov/pdfs/review10/fc043_kim_2010_o_web.pdf. Accessed 7 Nov 2012

  21. Lin B, Qiu L, Qiu B, Peng Y, Yan F (2011) A soluble and conductive polyfluorene ionomer with pendant imidazolium groups for alkaline fuel cell applications. Macromolecules 44:9642–9649. doi:10.1021/ma202159d

    CAS  Google Scholar 

  22. Bauer B, Strathmann H, Effenberger F (1990) Anion-exchange membranes with improved alkaline stability. Desalination 79:125–144

    CAS  Google Scholar 

  23. Sata T, Tsujimoto M, Yamaguchi T, Matsusaki K (1996) Change of anion exchange membranes in an aqueous sodium hydroxide solution at high temperature. J Memb Sci 112:161–170

    CAS  Google Scholar 

  24. Varcoe JR, Slade RCT, Yee ELH, Poynton SD, Driscoll DJ, Apperley DC (2007) Poly(ethylene-co-tetrafluoroethylene)-derived radiation-grafted anion-exchange membrane with properties specifically tailored for application in metal-cation-free alkaline polymer electrolyte fuel cells. Chem Mater 19:2686–2693. doi:10.1021/cm062407u

    CAS  Google Scholar 

  25. Poynton SD, Zeng R, Kizewski J, Ong AL, Varcoe JR (2012) Development of alkaline exchange ionomers for use in alkaline polymer electrolyte fuel cells. ECS Trans 50(2):2067–2073

    Google Scholar 

  26. Qiu B, Lin B, Qiu L, Yan F (2012) Alkaline imidazolium- and quaternary ammonium-functionalized anion exchange membranes for alkaline fuel cell applications. J Mater Chem 22:1040–1045. doi:10.1039/c1jm14331j

    CAS  Google Scholar 

  27. Yanagi H, Fukuta K (2008) Anion exchange membrane and ionomer for alkaline membrane fuel cells (AMFCs). ECS Trans 16(2):257–262. doi:10.1149/1.2981860

    CAS  Google Scholar 

  28. Luo Y, Guo J, Wang C, Chu D (2011) Tunable high-molecular-weight anion-exchange membranes for alkaline fuel cells. Macromol Chem Phys 212:2094–2102. doi:10.1002/macp.201100218

    CAS  Google Scholar 

  29. Einsla BR, Chempath S, Pratt LR, Boncella JM, Rau J, Macomber C, Pivovar BS (2007) Stability of cations for anion exchange membrane fuel cells. ECS Trans 11(1):1173–1180

    CAS  Google Scholar 

  30. Chempath S, Einsla BR, Pratt LR, Macomber CS, Boncella JM, Rau JA, Pivovar BS (2008) Mechanism of tetraalkylammonium headgroup degradation in alkaline fuel cell membranes. J Phys Chem C 112(9):3179–3182

    CAS  Google Scholar 

  31. Schwesinger R, Link R, Wenzl P, Kossek S, Keller M (2006) Extremely base-resistant organic phosphazenium cations. Chem Eur J 12(2):429–437. doi:10.1002/chem.200500837

    Google Scholar 

  32. Dekel D (2012) Latest advances in alkaline membrane fuel cell (AMFC) technology. In: Carisma 2012 – 3rd Carisma international conference, Copenhagen, 3 Sept 2012. http://www.hotmea.kemi.dtu.dk/upload/institutter/ki/hotmea/carisma%202012/abstracts/dekel%20carisma%202012.pdf. Accessed 17 Dec 2012

  33. Pivovar BS (2011) Alkaline membrane fuel cell workshop final report. http://www.nrel.gov/docs/fy12osti/54297.pdf. Accessed 6 Nov 2012

  34. Fujimoto CH, Hickner MA, Cornelius CJ, Loy DA (2005) Ionomeric poly(phenylene) prepared by Diels–Alder polymerization: synthesis and physical properties of a novel polyelectrolyte. Macromolecules 38(12):5010–5016. doi:10.1021/ma0482720

    CAS  Google Scholar 

  35. Miyazaki K, Sugimura N, Kawakita KI, Abe T, Nishio K, Nakanishi H, Matsuoka M, Ogumi Z (2010) Aminated perfluorosulfonic acid ionomers to improve the triple phase boundary region in anion-exchange membrane fuel cells. J Electrochem Soc 157(11):A1153–A1157. doi:10.1149/1.3483105

    CAS  Google Scholar 

  36. Tomoi M, Yamaguchi K, Ando R, Kantake Y, Aosaki Y, Kubota H (1997) Synthesis and thermal stability of novel anion exchange resins with spacer chains. J Appl Polym Sci 64:1161–1167

    CAS  Google Scholar 

  37. Hao JH, Chen C, Li L, Yu L, Jiang W (2000) Preparation of solvent-resistant anion-exchange membranes. Desalination 129:15–22

    CAS  Google Scholar 

  38. Pan J, Li Y, Zhuang L, Lu J (2010) Self-crosslinked alkaline polymer electrolyte exceptionally stable at 90 °C. Chem Commun 46:8597–8599. doi:10.1039/C0CC03618H

    CAS  Google Scholar 

  39. Faraj M, Elia E, Boccia M, Filpi A, Pucci A, Ciardelli F (2011) New anion conducting membranes based on functionalized styrene–butadiene–styrene triblock copolymer for fuel cells applications. J Polym Sci A Polym Chem 49:3437–3447. doi:10.1002/pola.24781

    CAS  Google Scholar 

  40. Stoica D, Ogier L, Akrour L, Alloin F, Fauvarque JF (2007) Anionic membrane based on polyepichlorhydrin matrix for alkaline fuel cell: synthesis, physical and electrochemical properties. Electrochim Acta 53:1596–1603. doi:10.1016/j.electacta.2007.03.034

    CAS  Google Scholar 

  41. Daikoku Y, Isomura T, Fukuta K, Yanagi H, Yamaguchi M (2011) Anion-exchange membrane and method for producing the same. US Patent Appl, US 2011/0281197 A1. http://appft1.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PG01&p=1&u=/netahtml/PTO/srchnum.html&r=1&f=G&l=50&s1=20110281197.PGNR. Accessed 12 Nov 2012

  42. Yao W, Tsai T, Chang YM, Chen M (2001) Polymer-based hydroxide conducting membranes. US Patent 6,183,914

    Google Scholar 

  43. Chen D, Hickner MA (2012) Degradation of imidazolium- and quaternary ammonium-functionalized poly(fluorenyl ether ketone sulfone) anion exchange membranes. ACS Appl Mater Interfaces. doi:10.1021/am301557w

    Google Scholar 

  44. Deavin OI, Murphy S, Ong AL, Poynton SD, Zeng R, Hermanac H, Varcoe JR (2012) Anion-exchange membranes for alkaline polymer electrolyte fuel cells: comparison of pendent benzyltrimethylammonium- and benzylmethylimidazolium-head-groups. Energy Environ Sci 5:8584–8597. doi:10.1039/c2ee22466f

    CAS  Google Scholar 

  45. Kim DS, Labouriau A, Guiver MD, Kim YS (2011) Guanidinium-functionalized anion exchange polymer electrolytes via activated fluorophenyl-amine reaction. Chem Mater 23:3795–3797. doi:10.1021/cm2016164

    CAS  Google Scholar 

  46. Wang J, Li S, Zhang S (2010) Novel hydroxide-conducting polyelectrolyte composed of an poly(arylene ether sulfone) containing pendant quaternary guanidinium groups for alkaline fuel cell applications. Macromolecules 43:3890–3896. doi:10.1021/ma100260a

    CAS  Google Scholar 

  47. Qu C, Zhang H, Zhang F, Liu B (2012) A high-performance anion exchange membrane based on bi-guanidinium bridged polysilsesquioxane for alkaline fuel cell application. J Mater Chem 22:8203–8207. doi:10.1039/c2jm16211c

    CAS  Google Scholar 

  48. Gu S, Cai R, Luo T, Yan Y (2008) Synthesis and characterizations of quaternary phosphonium polysulfone anion exchange membrane for alkaline fuel cell. In: 214th ECS Meeting, Abstract #1107. http://ma.ecsdl.org/content/MA2008-02/11/1107.full.pdf+html. Accessed 20 Dec 2012

  49. Gu S, Cai R, Luo T, Chen Z, Sun M, Liu Y, He G, Yan Y (2009) A soluble and highly conductive ionomer for high-performance hydroxide exchange membrane fuel cells. Angew Chem Int Ed Engl 121:6621–6624. doi:10.1002/ange.200806299

    Google Scholar 

  50. Kong X, Wadhwa K, Verkade JG, Schmidt-Rohr K (2009) Determination of the structure of a novel anion exchange fuel cell membrane by solid-state nuclear magnetic resonance spectroscopy. Macromolecules 42(5):1659–1664. doi:10.1021/ma802613k

    CAS  Google Scholar 

  51. Pivovar BS, Thorn DL (2009) Anion-conducting polymer, composition, and membrane. US Patent 7,582,683

    Google Scholar 

  52. Zhang B, Gu S, Wang J, Liu Y, Herring AM, Yan Y (2012) Tertiary sulfonium as a cationic functional group for hydroxide exchange membranes. RSC Adv 2:12683–12685. doi:10.1039/C2RA21402D

    CAS  Google Scholar 

  53. Pivovar BS (2010) Fundamentals of hydroxide conducting systems for fuel cells and electrolyzers. In: 2010 annual merit review meeting, DOE hydrogen program. http://www.hydrogen.energy.gov/pdfs/review10/bes016_pivovar_2010_o_web.pdf. Accessed 12 Nov 2012

  54. Long H, Kim K, Pivovar BS (2012) Hydroxide degradation pathways for substituted trimethylammonium cations: a DFT study. J Phys Chem C 116(17):9419–9426

    CAS  Google Scholar 

  55. Herring AM, Pivovar BS (2011) Anion exchange membranes for fuel cells. http://www1.eere.energy.gov/hydrogenandfuelcells/pdfs/amfc_110811_herring.pdf. Accessed 21 Dec 2012

  56. Zhang F, Zhang H, Ren J, Qu C (2010) PTFE based composite anion exchange membranes: thermally induced in situ polymerization and direct hydrazine hydrate fuel cell application. J Mater Chem 20:8139–8146. doi:10.1039/c0jm01311k

    CAS  Google Scholar 

  57. Kim YS (2012) Resonance-stabilized anion exchange polymer electrolytes. US DOE Hydrogen and fuel cells program and vehicle technologies program annual merit review. http://www.hydrogen.energy.gov/pdfs/review12/fc043_kim_2012_p.pdf. Accessed 13 Nov 2012

  58. Dekel D. Alkaline membrane fuel cells. In: Savinell R, Ota K, Kreysa G (eds) Encyclopedia of applied electrochemistry: springer reference (www.springerreference.com). Springer, Berlin/Heidelberg, 0. doi: 10.1007/SpringerReference_303632 2012-12-04 06:42:39 UTC

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dario Dekel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Dekel, D. (2014). Alkaline Membrane Fuel Cells, Membranes. In: Kreysa, G., Ota, Ki., Savinell, R.F. (eds) Encyclopedia of Applied Electrochemistry. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6996-5_524

Download citation

Publish with us

Policies and ethics