Skip to main content

Electron Transfer and Charge Storage in Thin Films of Nanoparticles

  • Living reference work entry
  • First Online:
Handbook of Nanoelectrochemistry

Abstract

This review is focused on the fundamental developments in the charge transfer processes and charge storage properties of different kinds of nanoparticles. Special attention is paid to metallic nanoparticles and nanostructured carbon materials. Behavior related to the discrete electron levels distribution is emphasized. Depending on the nanoparticle size, the electrochemistry is systemized in three regimes: bulk-continuum electrochemistry, electrochemical behavior reflective of quantized double-layer charging, and molecule-like behavior. Recent progress in understanding charge transfer process in two- and three-dimensional films of metallic nanoparticles based on electron-hopping model is discussed. A conductivity of carbon nanostructures, nanotubes, nano-onions, and graphene is briefly described in terms of their electronic structure. The exemplary results of nanoparticles thin film conductivity determination are presented. The review is concluded with an outlook on the technological potential of nanoparticles in charge storage devices. Principles of double-layer and faradaic electrochemical supercapacitors are given. Double-layer capacitance performances of carbon nanostructure that involved materials are summarized. Pseudocapacitance properties of polymeric nanoparticles that involved thin films are also discussed. Finally, electrochemical supercapacitors based on the nanocomposites containing carbon nanostructures are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Templeton AC, Wuelfing WP, Murray RW (2000) Monolayer-protected cluster molecules. Acc Chem Res 33:27–36

    CAS  Google Scholar 

  2. Murray RW (2008) Nanoelectrochemistry: metal nanoparticles, nanoelectrodes, and nanopores. Chem Rev 108:2688–2720

    CAS  Google Scholar 

  3. Sardar R, Funston AM, Mulvaney P, Murray RW (2009) Gold nanoparticles: past, present, and future. Langmuir 25(24):13840–13851

    CAS  Google Scholar 

  4. Chen S (2007) Discrete charge transfer in nanoparticle solid films. J Mater Chem 17:4115–4121

    CAS  Google Scholar 

  5. Bandaru PR (2007) Electrical properties and applications of carbon nanotube structures. J Nanosci Nanotechnol 7:1–29

    Google Scholar 

  6. Biercuk MJ, Ilani S, Marcus CM, McEuen PL (2008) Electrical transport in single-wall carbon nanotubes. In: Jorio A, Dresselhaus G, Dresselhaus MS (eds) Carbon nanotubes, Topics in applied physics. Springer, Berlin/Heidelberg, pp 455–493

    Google Scholar 

  7. Charlier J-C (2002) Defects in carbon nanotubes. Acc Chem Res 35:1063–1069

    CAS  Google Scholar 

  8. Wu YH, Yu T, Shen ZX (2010) Two-dimensional carbon nanostructures: fundamental properties, synthesis, characterization, and potential applications. J Appl Phys 108:071301-1–071301-38

    Google Scholar 

  9. Joselevich E (2004) Electronic structure and chemical reactivity of carbon nanotubes: a chemist’s view. ChemPhysChem 5:619–624. doi:10.1002/cphc.200301049

    CAS  Google Scholar 

  10. Huang L, Wu B, Yu G, Liu Y (2011) Graphene: learning from carbon nanotubes. J Mater Chem 21:919–929

    CAS  Google Scholar 

  11. Brownson DAC, Banks CE (2010) Graphene electrochemistry: an overview of potential applications. Analyst 135:2768–2778

    CAS  Google Scholar 

  12. Hanemann T, Szabo DV (2010) Polymer-nanoparticle composites: from synthesis to modern applications. Materials 3:3468–3517

    CAS  Google Scholar 

  13. Frackowiak E (2007) Carbon materials for supercapacitor application. Phys Chem Chem Phys 9:1774–1785

    CAS  Google Scholar 

  14. Lota G, Fic K, Frackowiak E (2011) Carbon nanotubes and their composites in electrochemical applications. Energy Environ Sci 4:1592–1605

    CAS  Google Scholar 

  15. Frackowiak E, Beguin F (2002) Electrochemical storage of energy in carbon nanotubes and nanostructured carbons. Carbon 40:1775–1787

    CAS  Google Scholar 

  16. Ghosh A, Lee YH (2012) Carbon-based electrochemical capacitors. ChemSusChem 5:480–499

    CAS  Google Scholar 

  17. Candelaria SL, Shao Y, Zhou W, Li X, Xiao J, Zhang J-G, Wang Y, Liu J, Li J, Cao G (2012) Nanostructured carbon for energy storage and conversion. Nano Energy 1:195–220

    CAS  Google Scholar 

  18. Choi H-J, Jung S-M, Seo J-M, Chang DW, Dai L, Baek J-B (2012) Graphene for energy conversion and storage in fuel cells and supercapacitors. Nano Energy 1:534–551

    CAS  Google Scholar 

  19. Frackowiak E, Beguin F (2001) Carbon materials for the electrochemical storage of energy in capacitors. Carbon 39:937–950

    CAS  Google Scholar 

  20. Chen S, Murray RW, Feldberg SW (1998) Quantized capacitance charging of monolayer-protected Au clusters. J Phys Chem B 102:9898–9907

    CAS  Google Scholar 

  21. Green SJ, Stokes JJ, Hostetler MJ, Pietron J, Murray RW (1997) Three-dimensional monolayers: nanometer-sized electrodes of alkenethiolate-stabilized gold cluster molecules. J Phys Chem B 101:2663–2668

    CAS  Google Scholar 

  22. Chen S, Huang K (2000) Electrochemical studies of water-soluble palladium nanoparticles. J Clust Sci 11:405–421

    CAS  Google Scholar 

  23. Templeton AC, Cliffel DE, Murray RW (1999) Redox and fluorophore functionalization of water-soluble, tiopronin-protected gold clusters. J Am Chem Soc 121:7081–7089

    CAS  Google Scholar 

  24. Templeton AC, Hostetler MJ, Warmoth EK, Chen S, Hartshorn CM, Krishnamurathy VM, Forbes MDE, Murray RW (1998) Gateway, reactions to diverse, polyfunctional monolayer-protected gold clusters. J Am Chem Soc 120:4845–4849

    CAS  Google Scholar 

  25. Aoki K, Chen J, Yang N, Nagasawa H (2003) Charge-transfer reactions of silver stearate-coated nanoparticles in suspensions. Langmuir 19:9904–9909

    CAS  Google Scholar 

  26. Porter MD, Bright TB, Allara DL, Chidsey CED (1987) Spontaneously organized molecular assemblies. 4. Structural characterization of n-alkyl thiol monolayers on gold by optical ellipsometry, infrared spectroscopy, and electrochemistry. J Am Chem Soc 109:3559–3568

    CAS  Google Scholar 

  27. Peterson RR, Cliffel DE (2006) Scanning electrochemical microscopy determination of organic soluble MPC electron-transfer rates. Langmuir 22:10307–10314

    CAS  Google Scholar 

  28. Guo R, Georganopoulou D, Feldberg SW, Donkers R, Murray RW (2005) Supporting electrolyte and solvent effects on single-electron double layer capacitance charging of hexanethiolate-coated Au140 nanoparticles. Anal Chem 77:2662–2669

    CAS  Google Scholar 

  29. Quinn B, Liljeroth P, Ruiz V, Laaksonen T, Kontturi K (2003) Electrochemical resolution of 15 oxidation states for monolayer protected gold nanoparticles. J Am Chem Soc 125:6644–6645

    CAS  Google Scholar 

  30. Hicks JF, Templeton AC, Chen S, Sheran KM, Jasti R, Murray RW, Debord J, Schaaff TG, Whetten RL (1999) The monolayer thickness dependence of quantized double-layer capacitances of monolayer-protected gold clusters. Anal Chem 71:3703–3711

    CAS  Google Scholar 

  31. Hicks JF, Miles DT, Murray RW (2002) Quantized double-layer charging of highly monodisperse metal nanoparticles. J Am Chem Soc 124:13322–13328

    CAS  Google Scholar 

  32. Jhaveri SD, Lowy DA, Foos EE, Snow AW, Ancona MG, Tender LM (2002) Ion-induced discrete charging of immobilized water-soluble gold nanoclusters. Chem Commun 1544–1545

    Google Scholar 

  33. Chen S, Pei R, Zhao T, Dyer DJ (2002) Gold nanoparticle assemblies by metal ion-pyridine complexation and their rectified quantized charging in aqueous solutions. J Phys Chem B 106:1903–1908

    CAS  Google Scholar 

  34. Zamborini FP, Hocks JF, Murray RW (2000) Quantized double layer charging of nanoparticle films assembled using carboxylate/(Cu2+ or Zn2+)/carboxylate bridges. J Am Chem Soc 122:4514–4515

    CAS  Google Scholar 

  35. Hicks JF, Zamborini FP, Murray RW (2002) Dynamics of electron transfer between electrodes and monolayers of nanoparticles. J Phys Chem B 106:7751–7757

    CAS  Google Scholar 

  36. Georganopoulou DG, Mirkin MV, Murray RW (2004) SECM measurement of the fast electron transfer dynamics between Au38 1+ nanoparticles and aqueous redox species at a liquid/liquid interface. Nano Lett 4:1763–1767

    Google Scholar 

  37. Chen S, Ingram RS, Hostetler MJ, Pietron JJ, Murray RW, Schaaff TG, Khoury JT, Alvarez MM, Whetten RL (1998) Gold nanoelectrodes of varied size: transition to molecule like charging. Science 280:2098–2101

    CAS  Google Scholar 

  38. Lee D, Donkers RL, Wang G, Harper AS, Murray RW (2004) Electrochemistry and optical absorbance and luminescence of molecule-like Au38 nanoparticles. J Am Chem Soc 126:6193–6199

    CAS  Google Scholar 

  39. Jimenez VL, Georganopoulou DG, White RJ, Harper AS, Mills AJ, Lee D, Murray RW (2004) Hexanethiolate monolayer protected 38 gold atom cluster. Langmuir 20:6864–6870

    CAS  Google Scholar 

  40. Balasubramanian R, Mills AL, Murray RW (2005) Reaction of Au55(PPh3)12Cl6 with thiols yields thiolate monolayer protected Au75 clusters. J Am Chem Soc 127:8126–8132

    CAS  Google Scholar 

  41. Tel-Vered R, Bard AJ (2006) Generation and detection of single metal nanoparticles using scanning electrochemical microscopy techniques. J Phys Chem B 110:25279–25287

    CAS  Google Scholar 

  42. Ingram RS, Hostetler MJ, Murray RW, Schaaff TG, Khoury JT, Whetten RL, Bigioni TP, Guthrie DK, First PN (1997) 28 kDa alkanethiolate-protected Au clusters give analogous solution electrochemistry and STM coulomb staircases. J Am Chem Soc 119:9279–9280

    CAS  Google Scholar 

  43. Pradhan S, Sun J, Deng F, Chen S (2006) Single-electron transfer in nanoparticle solids. Adv Mater 18:3279–3283

    CAS  Google Scholar 

  44. Hicks JF, Zamborini FP, Osisek AJ, Murray RW (2001) The dynamics of electron self-exchange between nanoparticles. J Am Chem Soc 123:7048–7053

    CAS  Google Scholar 

  45. Chen A, Pei R (2001) Ion-induced rectification of nanoparticle quantized capacitance charging in aqueous solutions. J Am Chem Soc 123:10607–10615

    CAS  Google Scholar 

  46. Chen S (2000) Nanoparticle assemblies: “rectified” quantized charging in aqueous media. J Am Chem Soc 122:7420–7421

    CAS  Google Scholar 

  47. Deng F, Chen S (2005) Self-assembled multilayers of gold nanoparticles: nitrate-induced rectification of quantized capacitance charging and effects of alkaline (earth) ions in aqueous solutions. Phys Chem Chem Phys 7:3375–3381

    CAS  Google Scholar 

  48. Deng F, Chen S (2007) Electrochemical quartz crystal microbalance studies of the rectified quantized charging of gold nanoparticle multilayers. Langmuir 23:936–941

    CAS  Google Scholar 

  49. Chen S (2000) Self-assembling of monolayer-protected gold nanoparticles. J Phys Chem B 104:663–667

    CAS  Google Scholar 

  50. Gittins DI, Bethell D, Nichols RJ, Schiffrin DI (1999) Redox-connected multilayers of discrete gold particles: a novel electroactive nanomaterial. Adv Mater 11:737–740

    CAS  Google Scholar 

  51. Liljeroth P, Vanmaekelbergh D, Ruiz V, Kontturi K, Jiang H, Kauppinen E, Quinn BM (2004) Electron transport in two-dimensional arrays of gold nanocrystals investigated by scanning electrochemical microscopy. J Am Chem Soc 126:7126–7132

    CAS  Google Scholar 

  52. Quinn BM, Prieto I, Haram SK, Bard AJ (2001) Electrochemical observation of a metal/insulator transition by scanning electrochemical microscopy. J Phys Chem B 105:7474–7476

    CAS  Google Scholar 

  53. Ahonen P, Ruiz V, Kontturi K, Liljeroth P, Quinn BM (2008) Electrochemical gating in scanning electrochemical microscopy. J Phys Chem C 112:2724–2728

    CAS  Google Scholar 

  54. Doty RC, Yu H, Shih CK, Korgel BA (2001) Temperature-dependent electron transport through silver nanocrystal superlattices. J Phys Chem B 105:8291–8296

    CAS  Google Scholar 

  55. Wuelfing WP, Green SJ, Pietron JJ, Cliffel DE, Murray RW (2000) Electronic conductivity of solid-state, mixed-valent, monolayer-protected Au clusters. J Am Chem Soc 122:11465–11472

    CAS  Google Scholar 

  56. Snow AW, Wohltjen H (1998) Size-induced metal to semiconductor transition in stabilized gold cluster ensemble. Chem Mater 10:947–949

    CAS  Google Scholar 

  57. Marcus RA (1993) Electron transfer reactions in chemistry: theory and experiment. Angew Chem Int Ed Engl 32:1111–1121

    Google Scholar 

  58. Marcus RA (1965) On the theory of electron-transfer reactions. VI. Unified treatment for homogenous and electrode reactions. J Chem Phys 43:679–701

    CAS  Google Scholar 

  59. Sheng P, Abeles B, Arie Y (1973) Hopping conductivity in granular metals. Phys Rev Lett 31:44–47

    CAS  Google Scholar 

  60. Likalter AA (1999) On hopping conductivity in granular metals. J Non Cryst Solids 250–252:771–775

    Google Scholar 

  61. Wuelfing WP, Murray RW (2002) Electron hopping through films of arenethiolate monolayer-protected gold clusters. J Phys Chem B 106:3139–3145

    CAS  Google Scholar 

  62. Ranganathan S, Guo R, Murray RW (2007) Nanoparticle films as electrodes: voltammetric sensitivity to the nanoparticle energy gap. Langmuir 23:7372–7377

    CAS  Google Scholar 

  63. Wang Y, Laborda E, Salter C, Crossley A, Compton RG (2012) Facile in situ characterization of gold nanoparticles on electrode surfaces by electrochemical techniques: average size, number density and morphology determination. Analyst 137:4693–4697

    CAS  Google Scholar 

  64. Uosaki K, Kondo T, Okamura M, Song W (2002) Electron and ion transfer through multilayers of gold nanoclusters covered by self-assembled monolayers of alkylthiols with various functional groups. Faraday Discuss 121:373–389

    CAS  Google Scholar 

  65. Facci JS, Schmehl RH, Murray RW (1982) Effect of redox site concentration on the rate of electron transport in a redox copolymer film. J Am Chem Soc 104:4959–4960

    CAS  Google Scholar 

  66. Chidsey CED (1991) Free energy and temperature dependence of electron transfer at the metal-electrolyte interface. Science 251:919–921

    CAS  Google Scholar 

  67. Smalley JF, Feldberg SW, Chidsey CED, Linford MR, Newton MD, Liu YP (1995) The kinetics of electron transfer through ferrocene-terminated alkanethiol monolayers on gold. J Phys Chem 99:13141–13149

    CAS  Google Scholar 

  68. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191

    CAS  Google Scholar 

  69. Bachtold A, Strunk C, Salvetat JP, Bonard JM, Forro L, Nussbaumer T, Schonenberger C (1999) Aharonov-Bohm oscillations in carbon nanotubes. Nature 397:673–675

    CAS  Google Scholar 

  70. Saito R, Dresselhaus G, Dresselhaus MS (1993) Electronic structure of double-layer graphene tubules. J Appl Phys 73(2):494–500

    CAS  Google Scholar 

  71. Li TL, Ting JH (2010) Determination of the Fermi-level subband indices of single-walled carbon nanotubes. Chin J Phys 48:629–649

    CAS  Google Scholar 

  72. Chico L, Santos H, Ayuela A, Jaskólski W, Pelc M, Brey L (2010) Unzipped and defective nanotubes: rolling up graphene and unrolling tubes. Acta Phys Polo A 118:433–441

    CAS  Google Scholar 

  73. Wang X, Yang DP, Huang G, Hunag P, Shen G, Guo S, Mei Y, Cui D (2012) Rolling up graphene oxide sheets into micro/nanoscrolls by nanoparticle aggregation. J Mater Chem 22:17441–17444

    CAS  Google Scholar 

  74. Tans SJ, Devoret MH, Dai H, Thess A, Smalley RE, Geerligs LJ, Dekker C (1997) Individual single-wall carbon nanotubes as quantum wires. Nature 386:474–477

    CAS  Google Scholar 

  75. Bockrath M, Cobden DH, McEuen PL, Chopra NG, Zettl A, Thess A, Smalley RE (1997) Single-electron transport in ropes of carbon nanotubes. Science 275:1922–1925

    CAS  Google Scholar 

  76. Tans SJ, Verschueren ARM, Dekker C (1998) Room-temperature transistor based on a single carbon nanotube. Nature 393:49–52

    CAS  Google Scholar 

  77. Martel R, Schmidt T, Shea HR, Hertel T, Avouris P (1998) Single- and multi-wall carbon nanotube field-effect transistors. Appl Phys Lett 73:2447–2449

    CAS  Google Scholar 

  78. Miao M (2011) Electrical conductivity of pure carbon nanotube yarns. Carbon 49:3755–3761

    CAS  Google Scholar 

  79. Mattia D, Rossi MP, Kim BM, Korneva G, Bau HH, Gogotsi Y (2006) Effect of graphitization on the wettability and electrical conductivity of CVD-Carbon nanotubes and films. J Phys Chem B 110:9850–9855

    CAS  Google Scholar 

  80. Li Q, Li Y, Zhang X, Chikkannanavar SB, Zhao Y, Dangelewicz AM, Zheng LZ, Doorn SK, Jia Q, Peterson DE, Arendt PN, Zhu Y (2007) Structure-dependent electrical properties of carbon nanotube. Adv Mater 19:3358–3363

    CAS  Google Scholar 

  81. Chen IWP, Liang R, Zhao H, Wang B, Zhang C (2011) Highly conductive carbon nanotube buckypapers with improved doping stability via conjugational cross-linking. Nanotechnology 22:1–7

    Google Scholar 

  82. Ryu Y, Yin L, Yu C (2012) Dramatic electrical conductivity improvement of carbon nanotube networks by simultaneous de-bundling and hole-doping with chlorosulfonic acid. J Mater Chem 22:6959–6964

    CAS  Google Scholar 

  83. Marinho B, Ghislandi M, Tkalya E, Koning CE, de With G (2012) Electrical conductivity of compacts graphene, multi-wall carbon nanotubes, carbon black, and graphite powder. Powder Technol 221:351–358

    CAS  Google Scholar 

  84. Tantang H, Ong JY, Loh CL, Dong X, Chen P, Chen Y, Hu X, Tan LP, Li LJ (2009) Using oxidation to increase the electrical conductivity of carbon nanotube electrodes. Carbon 47:1867–1885

    CAS  Google Scholar 

  85. Rezania H (2012) Electrical conductivity of zigzag carbon nanotubes including Holstein polarons. Eur Phys J B 85:1–5

    Google Scholar 

  86. Lin YM, Appenzeller J, Avouris P (2004) Ambipolar-to-unipolar conversion of carbon nanotube transistors by gate structure engineering. Nano Lett 4:947–950

    CAS  Google Scholar 

  87. Yao Z, Dekker C, Avouris P (2001) Electrical transport through single-wall carbon nanotubes. In: Dresselhaus MS, Dresselhaus G, Avouris PH (eds) Carbon nanotubes, Topics in applied physics. Springer, Berlin/Heidelberg, pp 147–171

    Google Scholar 

  88. Ilani S, Donev LAK, Kindermann M, McEuen PL (2006) Measurement of the quantum capacitance of interacting electrons in carbon nanotubes. Nat Phys 2:687–691

    CAS  Google Scholar 

  89. McEuen PL, Park JY (2004) Electron transport in single-walled carbon nanotubes. MRS Bull 29:272–275

    CAS  Google Scholar 

  90. Nygard J, Cobden DH, Bockrath M, McEuen PL, Lindelof PE (1999) Electrical transport measurements on single-walled carbon nanotubes. Appl Phys A 69:297–304

    CAS  Google Scholar 

  91. Li J, Cassell A, Delzeit L, Han J, Meyyappan M (2002) Novel three-dimensional electrodes: electrochemical properties of carbon nanotube ensembles. J Phys Chem B 106:9299–9305

    CAS  Google Scholar 

  92. Taurino I, Carrara S, Giorcelli M, Tagliaferro A, De Micheli G (2012) Comparison of two different carbon nanotube-based surfaces with respect to potassium ferricyanide electrochemistry. Surf Sci 606:156–160

    CAS  Google Scholar 

  93. Taurino I, Carrara S, Giorcelli M, Tagliaferro A, De Micheli G (2011) Comparing sensitivities of differently oriented multi-walled carbon nanotubes integrated on silicon wafer for electrochemical biosensors. Sensors Actuators B 160:327–333

    CAS  Google Scholar 

  94. Yu J, Shapter J, Quinton J, Johnston M, Beattie D (2006) Preparation, characterization and electrochemistry of carbon nanotubes directly attached to Si(100) surface. In: Abstracts of the international conference of nanoscience and nanotechnology ICONN 06, Brisbane, Qld, 3–7 July 2006

    Google Scholar 

  95. Diao P, Liu Z (2005) Electrochemistry AT chemically assembler single-wall carbon nanotube arrays. J Phys Chem B 109:20906–20913

    CAS  Google Scholar 

  96. Chou A, Bocking T, Singh NK, Gooding JJ (2005) Demonstration of the importance of oxygenated species at the ends of carbon nanotubes for their favourable electrochemical properties. Chem Commun 842–844

    Google Scholar 

  97. Wang Y, Iqbal Z (2005) Vertically oriented single-wall carbon nanotube/enzyme on silicon as biosensor electrode. JOM 34:27–29

    Google Scholar 

  98. Wang D, Song P, Liu C, Wu W, Fan S (2008) Highly oriented carbon nanotube papers made of aligned carbon nanotubes. Nanotechnology 19:1–6

    Google Scholar 

  99. Cao A, Ajayan PM, Ramanath G, Baskaran R, Turner K (2004) Silicon oxide thickness-dependent growth of carbon nanotubes. Appl Phys Lett 84:109–111

    CAS  Google Scholar 

  100. Liu Z, Shen Z, Zhu T, Hou S, Ying L (2000) Organizing single-walled carbon nanotubes on gold using a wet chemical self-assembling technique. Langmuir 16:3569–3573

    CAS  Google Scholar 

  101. Xin H, Woolley AT (2004) Directional orientation of carbon nanotubes on surfaces using a gas flow cell. Nano Lett 4:1481–1484

    CAS  Google Scholar 

  102. Kamat PV, Thomas KG, Barazzouk S, Girishkumar G, Vinodgopal K, Meisel D (2004) Self-assembled linear bundles of single wall carbon nanotubes and their alignment and deposition as a film in a dc field. J Am Chem Soc 126:10757–10762

    CAS  Google Scholar 

  103. Mazurenko I, Etienne M, Tananaiko O, Urbanova V, Zaitsev V, Walcarius A (2013) Electrophoretic deposition of macroporous carbon nanotube assemblies for electrochemical applications. Carbon 53:302–312

    CAS  Google Scholar 

  104. Schanmugam S, Gedanken A (2006) Electrochemical properties of bamboo-shaped multiwalled nanotubes generated by solid state pyrolysis. Electrochem Commun 8:1099–1105

    Google Scholar 

  105. Burghard M, Klauk H, Kern K (2009) Carbon-based field-effect transistors for nanoelectronics. Adv Mater 21:2586–2600

    CAS  Google Scholar 

  106. Mao S, Yu K, Chang J, Steeber DA, Ocola LE, Chen J (2013) Direct growth of vertically-oriented graphene for field-effect transistor biosensor. Sci Rep 3:1–6

    Google Scholar 

  107. Wang X, Li X, Zhang L, Yoon Y, Weber PK, Wang H, Guo J, Dai H (2009) N-doping of graphene through electrothermal reactions with ammonia. Science 234:768–771

    Google Scholar 

  108. Tworzydlo J, Trauzettel B, Titov M, Rycerz A, Beenakker CWJ (2006) Sub-poissonian shot noise in graphene. Phys Rev Lett 96:246802-1–246802-4

    Google Scholar 

  109. Schaffique A, Hwang EH, Galitski VM, Das Sarma S (2007) A self-consistent theory for graphene transport. Proc Natl Acad Sci U S A 104:18392–18397

    Google Scholar 

  110. Martin J, Akerman N, Ulbricht G, Lohmann T, Smet JH, von Klitzing K, Yacoby A (2008) Observation of electron-hole puddles in graphene using a scanning single-electron transistor. Nat Phys 4:144–148

    CAS  Google Scholar 

  111. Zhang H, Liu CX, Qi XL, Dai X, Fang Z, Zhang SC (2009) Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat Phys 5:438–442

    CAS  Google Scholar 

  112. Xia J, Chen F, Li J, Tao N (2009) Measurement of the quantum capacitance of graphene. Nat Nanotechnol 4:505–509

    CAS  Google Scholar 

  113. Tang L, Wang Y, Li Y, Feng H, Lu J, Li J (2009) Preparation, structure, and electrochemical properties of reduced graphene sheet films. Adv Funct Mater 19:2782–2789

    CAS  Google Scholar 

  114. Kang X, Wang J, Wu H, Liu J, Aksay IA, Lin Y (2010) A graphene-based electrochemical sensor for sensitive detection of paracetamol. Talanta 81:754–759

    CAS  Google Scholar 

  115. Alvarappan S, Erdem A, Liu C, Li CZ (2009) Probing the electrochemical properties of graphene nanosheets for biosensing applications. J Phys Chem C 113:8853–8857

    Google Scholar 

  116. Pudlak M, Pincak R (2009) Energy gap between highest occupied molecular orbital and lowest unoccupied molecular orbital in multiwalled fullerenes. Phys Rev A 79:033202-1–033202-5

    Google Scholar 

  117. Kuzntesov V, Moseenkov S, Ischenko A, Romanenko A, Buryakov T, Anikeeva O, Maksimenko S, Kuzhir P, Bychanok D, Gusinski A, Ruhavets O, Shenderova O, Lambin P (2008) Controllable electromagnetic response of onion-like carbon based materials. Phys State Solidi B 245:2051–2054

    Google Scholar 

  118. Sek S, Breczko J, Plonska-Brzezinska ME, Wilczewska AZ, Echegoyen L (2013) STM-based molecular junction of carbon nano-onion. Chem Phys Chem 14:96–100

    CAS  Google Scholar 

  119. Yang Z (2012) Application of nanocomposites for supercapacitors: characteristics and properties. In: Ebrahimi F (ed) Nanocomposites – new trends and developments. Nanotechnology and nanomaterials. INTECH, Rijeka, Croatia, 299–327

    Google Scholar 

  120. Zhang Y, Feng H, Wu X, Wang L, Zhang A, Xia T, Dong H, Li X, Zhang L (2009) Progress of electrochemical capacitor electrode materials: a review. Int J Hydrog Energy 34:4889–4899

    CAS  Google Scholar 

  121. Kang YJ, Chung H, Han CH, Kim W (2012) All-solid-state flexible supercapacitors based on papers coated with carbon nanotubes and ionic-liquid-based gel electrolytes. Nanotechnology 23:065401

    Google Scholar 

  122. Chandra A (2012) Supercapacitors: an alternate technology for energy storage. Proc Natl Acad Sci Sect A Phys Sci 82(1):79–90

    CAS  Google Scholar 

  123. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854

    CAS  Google Scholar 

  124. Bose S, Kuila T, Mishra AK, Rajasekar R, Kim NH, Lee JH (2012) Carbon-based nanostructured materials and their composites as supercapacitor electrodes. J Mater Chem 22:767–784

    CAS  Google Scholar 

  125. Suppiger D, Busato S, Ermanni P, Motta M, Windle A (2009) Electromechanical actuation of macroscopic carbon nanotube structures: mats and aligned ribbons. Phys Chem Chem Phys 11:5180–5185

    CAS  Google Scholar 

  126. Vivekchand SRC, Rout CS, Subrahmanyam KS, Govindaraj A, Rao CNR (2008) Graphene-based electrochemical supercapacitors. J Chem Sci 120:9–13

    CAS  Google Scholar 

  127. Chen JH, Li WZ, Wang DZ, Yang SX, Wen JG, Ren ZF (2002) Electrochemical characterization of carbon nanotubes as electrode in electrochemical double-layer capacitors. Carbon 40:1193–1197

    CAS  Google Scholar 

  128. Portret C, Taberna PL, Simon P, Flahaut E, Laberty-Robert C (2005) High power density electrodes for carbon supercapacitor applications. Electrochim Acta 50:4174–4181

    Google Scholar 

  129. Show Y (2012) Electric double-layer capacitor fabricated with addition of carbon nanotube to polarizable electrode. J Nanomater 2012:1–8

    Google Scholar 

  130. Qu D, Shi H (1998) Studies of activated carbons used in double-layer capacitors. J Power Sources 74:99–107

    CAS  Google Scholar 

  131. Pan H, Li J, Feng YP (2010) Carbon nanotubes for supercapacitor. Nanoscale Res Lett 5:654–668

    CAS  Google Scholar 

  132. Stoller MD, Park S, Zhu Y, An J, Ruoff RS (2008) Graphene-based ultracapacitors. Nano Lett 8:3498–3502

    CAS  Google Scholar 

  133. Liu C, Yu Z, Neff D, Zhamu A, Jang BZ (2010) Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett 10:4863–4868

    CAS  Google Scholar 

  134. Pech D, Brunet M, Durou H, Huang P, Mochslin V, Gogotsi Y, Taberna PL, Simon P (2010) Ultrahigh-power micrometer-sized supercapacitors based on onion-like carbon. Nat Nanotechnol 5:651–654

    CAS  Google Scholar 

  135. Al-zubaidi A, Inoue T, Matsushita T, Ishii Y, Hashimoto T, Kawaski S (2012) Cyclic voltammogram profile of single-walled carbon nanotube electric double-layer capacitor electrode reveals dumbbell shape. J Phys Chem C 116:7681–7686

    CAS  Google Scholar 

  136. Sharma P, Bhatti TS (2010) A review on electrochemical double-layer capacitors. Energy Convers Manage 51:2901–2912

    CAS  Google Scholar 

  137. Miller JR, Outlaw A, Holloway BC (2010) Graphene double-layer capacitor with ac line-filtering performance. Science 329:1637–1639

    CAS  Google Scholar 

  138. Zhang LL, Zhao XS (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38:2520–2531

    CAS  Google Scholar 

  139. Plonska-Brzezinska ME, Palkar A, Winkler K, Echegoyen L (2010) Electrochemical properties of small carbon nano-onion films. Electrochem Solid State Lett 13(4):K35–K38

    CAS  Google Scholar 

  140. Lee YJ, Jung JC, Yi J, Baeck SH, Yoon JR, Song IK (2010) Preparation of carbon aerogel in ambient conditions for electrical double-layer capacitor. Curr Appl Phys 10:682–686

    Google Scholar 

  141. Arable G, Wagh D, Kulkarni M, Mulla IS, Vernekar SP, Vijayamohanan K, Rao AM (2003) Enhanced supercapacitance of multiwalled carbon nanotubes functionalized with ruthenium oxide. Chem Phys Lett 376:207–213

    Google Scholar 

  142. Rakhi RB, Chen W, Cha D, Alshareef HN (2011) High performance supercapacitors using metal oxide anchored graphene nanosheet electrodes. J Mater Chem 21:16197–16204

    CAS  Google Scholar 

  143. Hughes M, Chen GZ, Shaffer MSP, Fray DJ, Windle AH (2002) Electrochemical capacitance of a nanoporous composite of carbon nanotubes and polypyrrole. Chem Mater 14:1610–1613

    CAS  Google Scholar 

  144. Zhou Y, Qin ZY, Zhang Y, Wei YL, Wang LF, Zhu MF (2010) Polyaniline/multi-walled carbon nanotube composites with core-shell structures as supercapacitor electrode material. Electrochim Acta 55:3904–3908

    CAS  Google Scholar 

  145. Gajendran P, Saraswathi R (2008) Polyaniline-carbon nanotube composite. Pure Appl Chem 80:2377–2395

    CAS  Google Scholar 

  146. Zhou YK, He BL, Zhou WJ, Huang J, Li XH, Wu B, Li HL (2004) Electrochemical capacitance of well-coated single-walled carbon nanotube with polyaniline composites. Electrochim Acta 49:257–262

    CAS  Google Scholar 

  147. Sivakkumar SR, Kim WJ, Choi JA, MacFarlane DR, Forsyth M, Kim DW (2007) Electrochemical performance of polyaniline nanofibres and polyaniline/multi-walled carbon nanotube composite as an electrode material for aqueous redox supercapacitors. J Power Sources 171:1062–1068

    CAS  Google Scholar 

  148. Frackowiak E, Jurewicz K, Delpeux S, Beguin F (2001) Nanotubular materials for supercapacitors. J Power Sources 97–98:822–825

    Google Scholar 

  149. Frackowiak E, Khomenko V, Jurewicz K, Lota K, Beguin F (2006) Supercapacitors based on conducting polymers/nanotubes composites. J Power Sources 153:413–418

    CAS  Google Scholar 

  150. Lota K, Khomenko V, Frackowiak E (2004) Capacitance properties of poly(3,4-ethylenedioxythiophene)/carbon nanotubes composites. J Phys Chem Solid 65:295–301

    CAS  Google Scholar 

  151. Wu Q, Xu Y, Liu A, Shi G (2010) Supercapacitors based on flexible graphene/polyaniline nanofiber composite films. ACS Nano 4:1963–1970

    CAS  Google Scholar 

  152. Yan J, Wei T, Shao B, Fan Z, Qian W, Zhang M, Wei F (2010) Preparation of a graphene nanosheet/polyaniline composite with high specific capacitance. Carbon 48:487–493

    CAS  Google Scholar 

  153. Mini PA, Balakrishnan A, Nair SV, Subramanian RV (2011) Highly super capacitive electrodes made of graphene/poly(pyrrole). Chem Commun 47:5753–5755

    CAS  Google Scholar 

  154. Park MS, Needham SA, Wang GX, Kang YM, Park JS, Dou SX, Liu HK (2007) Nanostructured SnSb/carbon nanotube composites synthesized by reductive precipitation for lithium-ion batteries. Chem Mater 19:2406–2410

    CAS  Google Scholar 

  155. Zhang W, Liu F, Li Q, Shou Q, Cheng J, Zhang L, Nelson BJ, Zhang X (2012) Transition metal oxide and graphene nanocomposites for high-performance electrochemical capacitors. Phys Chem Chem Phys 14:16331–16337

    CAS  Google Scholar 

  156. Khomenko V, Raymundo-Pinero E, Beguin F (2006) Optimisation of an asymmetric manganese oxide/activated carbon capacitor working at 2 V in aqueous medium. J Power Sources 153:183–190

    CAS  Google Scholar 

  157. Bleda-Martinez MJ, Peng C, Zhang S, Chen GZ, Morallon E, Cazorla-Amaros D (2008) Electrochemical methods to enhance the capacitance of activated carbon/polyaniline composites. J Electrochem Soc 155(10):A672–A678

    CAS  Google Scholar 

  158. Plonska-Brzezinska ME, Breczko J, Palys B, Echegoyen L (2013) The electrochemical properties of nanocomposite films obtained by chemical in situ polymerization of aniline and carbon nanostructures. ChemPhysChem 14:116–124

    CAS  Google Scholar 

  159. Plonska-Brzezinska ME, Mazurczyk J, Palys B, Breczko J, Lapinski A, Dubis AT, Echegoyen L (2012) Preparation and characterization of composites that contain small carbon nano-onions and conducting polyaniline. Chem Eur J 18:2600–2608

    CAS  Google Scholar 

  160. Borgohain R, Li J, Selegue JP, Cheng YT (2012) Electrochemical study of functionalized carbon nano-onions for high-performance supercapacitor electrodes. J Phys Chem C 116:15068–15075

    CAS  Google Scholar 

  161. Gujar TP, Kim WY, Puspitasari I, Jung KD, Joo OS (2007) Electrochemically deposited nanograin ruthenium oxide as a pseudocapacitive electrode. Int J Electrochem Sci 2:666–673

    CAS  Google Scholar 

  162. Park SH, Kim JY, Kim KB (2010) Pseudocapacitive properties of nanostructured anhydrous ruthenium oxide thin film prepared by electrostatic spray deposition and electrochemical lithiation/delithiation. Fuel Cells 10:865–872

    CAS  Google Scholar 

  163. Zhang J, Ma J, Zhang LL, Guo P, Jiang J, Zhao XS (2010) Template synthesis of tubular ruthenium oxides for supercapacitor applications. J Phys Chem C 114:13608–13613

    CAS  Google Scholar 

  164. Peng H, Lu Q, Zhang Y, Li Y, Gao F (2010) Selective synthesis of nickel oxide nanowires and length effect on their electrochemical properties. Nanoscale 2:920–922

    Google Scholar 

  165. Cho HW, Nam JH, Park JH, Kim KM, Ko JM (2012) Supercapacitive properties of Co-Ni mixed oxide electrode adopting the nickel foam as a current collector. Bull Korean Chem Soc 33:3993–3997

    CAS  Google Scholar 

  166. Ahn YR, Song MY, Jo SM, Park CR, Kim DY (2006) Electrochemical capacitors based on electrodeposited ruthenium oxide on nanofibre substrates. Nanotechnology 17:2865–2869

    CAS  Google Scholar 

  167. Inamdar AI, Kim YS, Sohn JS, Im H (2011) Supercapacitive characteristics of electrodeposited polyaniline thin films grown on indium-doped tin-oxide substrates. J Korean Phys Soc 59:145–149

    CAS  Google Scholar 

  168. Conway E (1999) Capacitance behavior of films of conducting, electrochemically reactive polymers. In: Electrochemical supercapacitors. Springer Science, New York, pp 299–333

    Google Scholar 

  169. Radhakrishnan S, Muthukannan R, Kamatchi U, Rao CRK, Vijayan M (2011) Performance of phosphoric acid doped polyaniline as electrode material for aqueous redox supercapacitor. Indian J Chem 50A:970–978

    CAS  Google Scholar 

  170. Peng C, Hu D, Chen GZ (2011) Theoretical specific capacitance based on charge storage mechanisms of conducting polymers: comment on “vertically oriented arrays of polyaniline nanorods and their super electrochemical properties”. Chem Commun 47:4105–4107

    CAS  Google Scholar 

  171. Pan L, Qiu H, Li Y, Pu L, Xu J, Shi Y (2010) Conducting polymer nanostructures: template synthesis and applications energy storage. Int J Mol Sci 11:2636–2657

    CAS  Google Scholar 

  172. Snook GA, Kao P, Best AS (2011) Conducting-polymer-based supercapacitor devices and electrodes. J Power Sources 196:1–12

    CAS  Google Scholar 

  173. Snook GA, Best AS (2009) Co-deposition of conducting polymers in a room temperature ionic liquid. J Mater Chem 19:4248–4254

    CAS  Google Scholar 

  174. Ryu KS, Kim KM, Park NG, Park YJ, Chang SH (2002) Symmetric redox supercapacitor with conducting polyaniline electrodes. J Power Sources 103:305–309

    CAS  Google Scholar 

  175. Kim MS, Moon JH, Yoo PJ, Park JH (2012) Hollow polypyrrole films: applications for energy storage devices. J Electrochem Soc 159(7):A1052–A1056

    CAS  Google Scholar 

  176. Guranthan K, Murugan AV, Marimuthu R, Mulik UP, Amalnerker DP (1999) Electrochemically synthesized conducting polymeric materials for applications towards technology in electronics, optoelectronics and energy storage devices. Mater Chem Phys 61:173–191

    Google Scholar 

  177. Kim BC, Ko JM, Wallace GG (2008) A novel capacitor material based on Nafion-doped polypyrrole. J Power Sources 177:665–668

    CAS  Google Scholar 

  178. Signorelli R, Dc K, Kassakian JG, Schindall JE (2009) Electrochemical double layer capacitors using carbon nanotube electrode structures. Proc IEEE 97:1837–1847

    CAS  Google Scholar 

  179. Park TR, Rhee SS (2001) Multilayer model of interlayer spacing in graphite intercalation compounds. Appl Phys A 72:367–372

    CAS  Google Scholar 

  180. Li CZ, Liu G, Prabhulkar S (2009) Comparison of kinetics of hemoglobin electron transfer in solution and immobilized on electrode surface. Am J Biomed Sci 1(4):303–311

    Google Scholar 

  181. Jain A, Connolly JO, Woolley R, Krishnamurathy S, Marsili E (2013) Extracellular electron transfer mechanism in Shewanella loihica PV-4 biofilms formed at indium tin oxide and graphite electrodes. Int J Electrochem 8:1778–1793

    CAS  Google Scholar 

  182. Hoshino T, Sekiguchi SI, Muguruma H (2012) Amperometric biosensor based on multilayer containing carbon nanotube, plasma-polymerized film, electron transfer mediator phenothiazine, and glucose dehydrogenase. Bioelectrochemistry 84:1–5

    CAS  Google Scholar 

  183. Duo I, Fujishima A, Comninellis C (2003) Electron transfer kinetics on composite diamond (sp3) – graphite (sp2) electrodes. Electrochem Commun 5:695–700

    CAS  Google Scholar 

  184. Maluangnont T, Sirisaksoontorn W, Lerner MM (2012) A comparative structural study of ternary graphite intercalation compounds containing alkali metals and linear or branched amines. Carbon 50:597–602

    CAS  Google Scholar 

  185. Matsumoto R, Akuzawa N, Takahashi Y (2006) Thermoelectric properties of cesium-graphite intercalation compounds. Mater Trans 47:1458–1463

    CAS  Google Scholar 

  186. Kumar NA, Choi HJ, Bund A, Baek JB, Jeong YT (2012) Electrochemical supercapacitors based on a novel graphene/conjugated polymer composite system. J Mater Chem 22:12268–12274

    CAS  Google Scholar 

  187. Wang CC, Hu CC (2004) The capacitive performance od activated carbon-ruthenium oxide composites for supercapacitors: effects of ultrasonic treatment in NaOH and annealing in air. Mater Chem Phys 83:289–297

    CAS  Google Scholar 

  188. Yuan GH, Jiang ZH, Aramata A, Gao YZ (2005) Electrochemical behavior of activated-carbon capacitor material loaded with nickel oxide. Carbon 43:2913–2917

    CAS  Google Scholar 

  189. Nian YR, Teng H (2002) Nitric acid modification of activated carbon electrodes for improvement of electrochemical capacitance. J Electrochem Soc 149:A1008–A1014

    CAS  Google Scholar 

  190. Tian Y, Song Y, Tang Z, Guo Q, Liu L (2008) Influence of high treatment of porous carbon on the electrochemical performance in supercapacitor. J Power Sources 184:675–681

    CAS  Google Scholar 

  191. Sun GW, Wang C, Zhan L, Qiao WM, Liang XY, Ling LC (2008) Influence of high temperature treatment of activated carbon on performance of supercapacitors. J Mater Sci Eng 2:41–47

    Google Scholar 

  192. Pumera M (2009) Electrochemistry of graphene: new horizons for sensing and energy storage. Chem Rec 9:211–223

    CAS  Google Scholar 

  193. Azam MA, Fujiwara A, Shimoda T (2013) Significant capacitance performance of vertically aligned single-walled nanotube supercapacitor by varying potassium hydroxide concentration. Int J Electrochem Sci 8:3902–3911

    Google Scholar 

  194. Du C, Pan N (2006) High power density supercapacitor electrodes of carbon nanotube films by electrophoretic deposition. Nanotechnology 17:5314–5318

    CAS  Google Scholar 

  195. Tzeng Y, Chen Y, Liu C (2003) Electrical contacts between carbon-nanotube coated electrodes. Diamond Relat Mater 12:774–779

    CAS  Google Scholar 

  196. Ye JS, Liu X, Cui HF, Zhang WD, Sheu FS, Lim TM (2005) Electrochemical oxidation of multi-walled carbon nanotubes and its application to electrochemical double layer capacitors. Electrochem Commun 7:249–255

    CAS  Google Scholar 

  197. Grądzka E, Winkler K, Borowska M, Plonska-Brzezinska ME, Echegoyen L (2013) Comparison of the electrochemical properties of thin films of MWCNTs/C60-Pd, SWCNTs/C60-Pd and ox-CNOs/C60-Pd. Electrochim Acta 96:274–284

    Google Scholar 

  198. Shiraishi S, Kurihara H, Okabe K, Hulicova D, Oya A (2002) Electric double layer capacitance of highly pure single-walled carbon nanotubes (HiPco™ Byckytubes™) in propylene carbonate electrolytes. Electrochem Commun 4:593–598

    CAS  Google Scholar 

  199. Liu CG, Fang HT, Li F, Liu M, Cheng HM (2006) Single-walled carbon nanotubes modified by electrochemical treatment for application in electrochemical capacitors. J Power Sources 160:758–761

    CAS  Google Scholar 

  200. Liu F, Xue D (2013) An electrochemical route to quantitative oxidation of graphene frameworks with controllable C/O ratios and added pseudocapacitances. Chem Eur J. doi:10.1002/chem.201300679

    Google Scholar 

  201. Gu W, Peters N, Yushin G (2013) Functionalized carbon onions, detonation nanodiamond and mesoporous carbon as cathodes in Li-ion electrochemical energy storage. Carbon 53:292–301

    CAS  Google Scholar 

  202. Buglione L, Chng ELK, Ambrosi A, Sofer Z, Pumera M (2012) Graphene materials preparation methods have dramatic influence upon their capacitance. Electrochem Commun 14:5–8

    CAS  Google Scholar 

  203. Fu C, Kuang Y, Huang Z, Wang X, Yin Y, Chen J, Zhou H (2011) Supercapacitor based on graphene and ionic liquid electrolyte. J Solid State Electrochem 15:2581–2585

    CAS  Google Scholar 

  204. Wang Y, Sun H, Zhang R, Yu S, Kong J (2013) Large scale template synthesis of single-layered graphene with a high electrical capacitance. Carbon 53:245–251

    CAS  Google Scholar 

  205. Hsieh CT, Hsu SM, Lin JY (2012) Fabrication of graphene-based electrochemical capacitors. Jpn J Appl Phys 51:01AH06-1–01AH06-7

    Google Scholar 

  206. Breczko J, Winkler K, Plonska-Brzezinska ME, Villalta-Cerdas A, Echegoyen L (2010) Electrochemical properties of composites containing small carbon nano-onions and solid polyelectrolytes. J Mater Chem 20:7761–7768

    CAS  Google Scholar 

  207. Bushueva EG, Galkin PS, Okotrub AV, Bulusheva LG, Gavrilov NN, Kuznetsov VL, Molseekov SI (2008) Double layer supercapacitor properties of onion-like carbon materials. Phys Status Solidi B 245:2296–2299

    CAS  Google Scholar 

  208. Zhu Y, Murati S, Stoller MD, Ganesh KJ, Cai W, Ferreira PJ, Pirkle A, Wallace RM, Cychosz KA, Thommes M, Su D, Stach EA, Ruoff RS (2011) Carbon-based supercapacitors produced by activation of graphene. Science 332:1537–1541

    CAS  Google Scholar 

  209. Kim TY, Lee HW, Stoller M, Dreyer DR, Bielawski CW, Ruoff RS, Suh KS (2011) High-performance supercapacitors based on poly(ionic liquid)-modified graphene electrodes. ACS Nano 25(1):436–442

    Google Scholar 

  210. Li X, Zhu Y, Cai W, Borysiak M, Han B, Chen D, Piner RD, Colombo L, Ruoff RS (2009) Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett 9:4359–4363

    CAS  Google Scholar 

  211. Yun YS, Park HH, Jin HJ (2012) Pseudocapacitive effects of N-doped carbon nanotube electrodes in supercapacitors. Materials 5:1258–1266

    CAS  Google Scholar 

  212. Smith B, Wepasnick K, Schrote KE, Bertele AR, Ball WP, O’melia C, Fairbrother H (2009) Colloidal properties of aqueous suspensions of acid-treated multi-walled carbon nanotubes. Environ Sci Technol 43:819–825

    CAS  Google Scholar 

  213. Smith B, Wepasnick K, Schrote KE, Cho HH, Ball WP, Fairbrother DH (2009) Influence of surface oxides on the colloidal stability of multi-walled carbon nanotubes: a structure-property relationship. Langmuir 25(17):9767–9776

    CAS  Google Scholar 

  214. Hu CC, Su JH, WEn TC (2007) Modification of multi-walled carbon nanotubes for electric double-layer capacitors: tube opening and surface functionalization. J Phys Chem Solids 68:2353–2362

    CAS  Google Scholar 

  215. Esteve W, Budzinski H, Villenave E (2004) Relative rate constants for the heterogeneous reactions of OH, NO2 and NO radicals with polycyclic aromatic hydrocarbons adsorbed on carbonaceous particles. Part 1: PAHs adsorbed on 1-2μm calibrated graphite particles. Atmos Environ 38:6063–6072

    CAS  Google Scholar 

  216. Zhang J, Zou H, Qing Q, Yang Y, Li Q, Liu Z, Guo X, Du Z (2003) Effect of chemical oxidation on the structure of single-walled carbon nanotubes. J Phys Chem B 107:3712–3718

    CAS  Google Scholar 

  217. Datsyuk V, Kalyva M, Papagelis K, Parthenios J, Tasis D, Siokou A, Kallisis I, Galiotis C (2008) Chemical oxidation of multiwalled carbon nanotubes. Carbon 46:833–840

    CAS  Google Scholar 

  218. Li M, Boggs M, Beebe TP, Huang CP (2008) Oxidation of single-walled carbon nanotubes in dilute aqueous solutions by ozone as affected by ultrasound. Carbon 48:466–475

    Google Scholar 

  219. Krishnamoorthy K, Veerapandian M, Yun K, Kim SJ (2013) The chemical and structural analysis of graphene oxide with different degrees of oxidation. Carbon 56:38–49

    Google Scholar 

  220. Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228–240

    CAS  Google Scholar 

  221. Savage T, Bhattacharaya S, Sadanadan B, Gaillard J, Tritt TM, Sun YP, Wu Y, Nayak S, Car R, Marzari N, Ajayan PM, Rao AM (2003) Photoinduced oxidation of carbon nanotubes. J Phys Condens Matter 15:5915–5921

    CAS  Google Scholar 

  222. Vione D, Maurino V, Minero C, Pelizzetti E, Harrison MAJ, Olariu RI, Arsene C (2006) Photochemical reactions in the tropospheric aqueous phase and on particulate matter. Chem Soc Rev 35:441–453

    CAS  Google Scholar 

  223. Yang DQ, Sacher E (2008) Strongly enhanced interaction between evaporated Pt nanoparticles and functionalized multiwalled carbon nanotubes via plasma surface modifications: effects of physical and chemical defects. J Phys Chem C 112:4075–4082

    CAS  Google Scholar 

  224. Zschoerper NP, Katzenmaier V, Vohrer U, Haupt M, Oehr C, Hirth T (2009) Analytical investigation of the composition of plasma-induced functional groups on carbon nanotube sheets. Carbon 47:2174–2185

    CAS  Google Scholar 

  225. Wepasnick KA, Smith BA, Schrote KE, Wilson HK, Diegelmann SR, Fairbrother DH (2011) Surface and structural characterization of multi-walled carbon nanotubes following different oxidative treatments. Carbon 49:24–36

    CAS  Google Scholar 

  226. Mastragostino M, Arbizzani C, Soavi F (2002) Conducting polymers as electrode materials in supercapacitors. Solid State Ion 148:493–498

    CAS  Google Scholar 

  227. Khomenko V, Frackowiak E, Beguin F (2006) Development of supercapacitors based on conducting polymers. In: Barsukov IV, Johnson CS, Doninger JE, Barsukov VZ (eds) New carbon based materials for electrochemical energy storage systems. Springer, Netherlands, pp 41–50

    Google Scholar 

  228. Conte S, Rodriguez-Calero GG, Burkhardt SE, Lowe MA, Abruna HD (2013) Designing conducting polymer films foe electrochemical energy storage technologies. RSC Adv 3:1957–1964

    CAS  Google Scholar 

  229. Lokhande CD, Dubal DP, Joo OS (2011) Metal oxide thin film based supercapacitors. Curr Appl Phys 11:255–270

    Google Scholar 

  230. Deng W, Ji X, Chen Q, Banks CE (2011) Electrochemical capacitors utilizing transition metal oxides: an update of recent developments. RSC Adv 1:1171–1178

    CAS  Google Scholar 

  231. Cottineau T, Toupin M, Delahaye T, Brousse T, Belanger D (2006) Nanostructured transition metal oxides for aqueous hybrid electrochemical supercapacitors. Appl Phys A 82:599–606

    CAS  Google Scholar 

  232. Pecher J, Mecking S (2010) Nanoparticles of conjugated polymers. Chem Rev 110:6260–6279

    CAS  Google Scholar 

  233. Brancewicz E, Grądzka E, Basa A, Winkler K (2014) Chemical synthesis and characterization of the C60-Pd polymer spherical nanoparticles. Submitted to Electrochim Acta 128:91–101

    Google Scholar 

  234. Li N, Xiao Y, Xu C, Li H, Yang X (2013) Facile preparation of polyaniline nanoparticles via electrodeposition for supercapacitors. Int J Electrochem Sci 8:1181–1188

    CAS  Google Scholar 

  235. Kwon WJ, Suh DH, Chin BD, Yu JW (2008) Preparation of polypyrrole nanoparticles in mixed surfactants system. J Appl Polym Sci 110:1324–1329

    CAS  Google Scholar 

  236. Channu VSR, Holze R, Wicker SA Sr, Walker EH Jr, Wiliams QL, Kalluru RR (2011) Synthesis and characterization of (Ru-Sn)O2 nanoparticles for supercapacitors. Mater Sci Appl 2:1175–1179

    CAS  Google Scholar 

  237. Thiagarajan S, Tsai TH, Chen SM (2011) Electrochemical fabrication of nano manganese oxide modified electrode for the detection of H2O2. Int J Electrochem 6:2235–2245

    CAS  Google Scholar 

  238. Bjorklund RB, Liedberg B (1986) Electrically conducting composites of colloidal polypyrrole and methylcellulose. J Chem Soc Chem Commun 1293–1295

    Google Scholar 

  239. Armes SP, Miller JF, Vincent B (1987) Aqueous dispersions of electrically conducting monodisperse polypyrrole particles. J Colloid Interface Sci 118(2):410–416

    CAS  Google Scholar 

  240. Lee ES, Park JH, Wallace GG, Bae YH (2004) In situ formed processable polypyrrole nanoparticle/amphiphilic elastomer composites and their properties. Polym Int 53:400–405

    CAS  Google Scholar 

  241. Digar ML, Bhattacharyya SN, Mandal BM (1994) Dispersion polymerization of pyrrole using poly(vinyl methyl ether) as stabilizer. Polymer 35(2):377–382

    CAS  Google Scholar 

  242. Xia H, Wang Q (2001) Synthesis and characterization of conductive polyaniline nanoparticles through ultrasonic assisted inverse microemulsion polymerization. J Nanopart Res 3:401–411

    CAS  Google Scholar 

  243. Stejskal J, Omastova M, Fedorova S, Prokes J, Trchova M (2003) Polyaniline and polypyrrole prepared in the presence of surfactants: a comparative conductivity study. Polymer 44:1353–1358

    CAS  Google Scholar 

  244. Omastova M, Trchova M, Kovarova J, Stejskal J (2003) Synthesis and structural study of polypyrroles prepared in the presence of surfactants. Synth Met 138:447–455

    CAS  Google Scholar 

  245. Kim BJ, Oh SG, Han MG, Im SS (2000) Preparation of polyaniline nanoparticles in micellar solutions as polymerization medium. Langmuir 16:5841–5845

    CAS  Google Scholar 

  246. Han MG, Cho SK, Oh SG, Im SS (2002) Preparation and characterization of polyaniline nanoparticles synthesized from DBSA micellar solution. Synth Met 126:53–60

    CAS  Google Scholar 

  247. Yan F, Xue G (1999) Synthesis and characterization of electrically conducting polyaniline in water-oil microemulsion. J Mater Chem 9:3035–3039

    CAS  Google Scholar 

  248. Selvan ST, Mani A, Anthinaarayanasamy K, Phani KLN, Pitchumani S (1995) Synthesis of crystalline polyaniline. Mater Res Bull 30:699–705

    CAS  Google Scholar 

  249. Zhou Q, Wang J, Ma Y, Cong C, Wang F (2007) The relationship of conductivity to the morphology and crystallinity of polyaniline controlled by water content via reverse microemulsion. Colloid Polym Sci 285:405–411

    Google Scholar 

  250. Marie E, Rothe R, Antonietti M, Landfester D (2003) Synthesis of polyaniline particles via inverse and direct miniemulsion. Macromolecules 36:3967–3973

    CAS  Google Scholar 

  251. Jang J, Ha J, Kim S (2007) fabrication of polyaniline nanoparticles using microemulsion polymerization. Macromol Res 15:154–159

    CAS  Google Scholar 

  252. Winkler K, Balch AL (2006) Electrochemically formed two-component films comprised of fullerene and transition-metal components. CR Chimie 9:928–943

    CAS  Google Scholar 

  253. Balch AL, Costa DA, Winkler K (1998) Formation of redox-active, two-component films by electrochemical reduction of C60 and transition metal complexes. J Am Chem Soc 120:9614–9620

    CAS  Google Scholar 

  254. Winkler K, de Bettencourt-Dias A, Balch AL (2000) Electrochemical studies of C60/Pd films formed by the reduction of C60 in the presence of palladium (II) acetate trimer. Effects of varying C60/Pd (II) ratios in the precursor solutions. Chem Mater 12:1386–1392

    CAS  Google Scholar 

  255. Winkler K, Noworyta K, de Bettencourt-Dias A, Sobczak W, Wu CT, Chen LC, Kutner W, Balch AL (2003) Structure and properties of C60-Pd films formed by electroreduction of C60 and palladium (II) acetate trimer: evidence for the presence of palladium nanoparticles. J Mater Chem 13:518–525

    CAS  Google Scholar 

  256. Grodzka E, Grabowska J, Wysocka-Zolopa M, Winkler K (2008) Electrochemical formation and properties of two-component films of transition metal complexes and C60 or C70. J Solid State Electrochem 12:1267–1278

    CAS  Google Scholar 

  257. Nagashima H, Nakaoka A, Saito Y, Kato M, Kawanishi T, Itoh K (1992) C60Pdn: The first organometallic polymer of buckminsterfullerene. J Chem Soc 4:377–379

    Google Scholar 

  258. Brancewicz E, Grądzka E, Winkler K (2013) Comparison of electrochemical properties of two-component C60-Pd polymers formed under electrochemical conditions and by chemical synthesis. J Solid State Electrochem 17:1233–1245

    CAS  Google Scholar 

  259. Winkler K, Grodzka E, D’Souza F, Balch AL (2007) Two-component films of fullerene and palladium as materials for electrochemical capacitors. J Electrochem Soc 154(4):K1–K10

    CAS  Google Scholar 

  260. Liu R, Duay J, Lee SB (2010) Redox exchange induced MnO2 nanoparticle enrichment in poly(3,4-ethylenedioxythiophene) nanowires for electrochemical energy storage. ACS Nano 4:4299–4307

    CAS  Google Scholar 

  261. Bedre MD, Deshpande R, Salimath B, Abbaraju V (2012) Preparation and characterization of polyaniline-Co3O4 nanocomposites via interfacial polymerization. Am J Mater Sci 2(3):39–43

    Google Scholar 

  262. Kondawar SB, Bompilwar SD, Khati VS, Thakre SR, Tabhane VA, Burghate DK (2010) Characterizations of zinc oxide nanoparticles reinforced conducting polyaniline composites. Arch Appl Sci Res 2(1):247–253

    CAS  Google Scholar 

  263. Kondawar S, Mahore R, Dahegaonkar A, Agrawal S (2011) Electrical conductivity of cadmium oxide nanoparticles embedded polyaniline nanocomposites. Adv Appl Sci Res 2(4):401–406

    CAS  Google Scholar 

  264. Tao L, Zai J, Wang K, Zhang H, Xu M, Shen J, Su Y, Qian X (2012) Co3O4 nanorods/graphene nanosheets nanocomposites for lithium ion batteries with improved reversible capacity and cycle stability. J Power Sources 202:230–235

    CAS  Google Scholar 

  265. Khomenko V, Frackowiak E, Beguin F (2005) Determination of the specific capacitance of conducting polymer/nanotubes composite electrodes using different cell configuration. Electrochim Acta 50:2499–2506

    CAS  Google Scholar 

  266. Raymundo-Pinero E, Khomenko V, Frackowiak E, Beguin F (2005) Performance of manganese oxide/CNTs composite as electrode materials for electrochemical capacitors. J Electrochem Soc 152(1):A229–A235

    CAS  Google Scholar 

  267. Peng C, Zhang S, Jewell D, Chen GZ (2008) Carbon nanotube and conducting polymer composites for supercapacitors. Prog Nat Sci 18:777–788

    CAS  Google Scholar 

  268. Xu F, Jamal R, Ubul A, Shao W, Abdiryim T (2013) Characterization and electrochemical properties of poly(aniline-co-o-methoxyaniline)/multi-walled carbon nanotubes composites synthesized by solid-state method. Fibers Polym 14:8–15

    CAS  Google Scholar 

  269. Jurewicz K, Delpeux S, Bertagna V, Beguin F, Frackowiak E (2001) Supercapacitors from nanotubes/polypyrrole composites. Chem Phys Lett 347:36–40

    CAS  Google Scholar 

  270. Dong B, He BL, Xu CL, Li HL (2007) Preparation and electrochemical characterization of polyaniline/multi-walled carbon nanotubes composites for supercapacitors. Mater Sci Eng B 143:7–13

    CAS  Google Scholar 

  271. Xu Y, Zhuang SQ, Zhang XY, He PG, Gang YZ (2011) Configuration and capacitance properties of polypyrrole/aligned carbon nanotubes synthesized by electropolymerization. Chin Sci Bull 56:3823–3828

    CAS  Google Scholar 

  272. Bahrami A, Talib ZA, Shahriari E, Yunus WMM, Kasim A, Behzed K (2012) Characterization and electrosynthesized conjugated polymer-carbon nanotube composite: optical nonlinearity property. Int J Mol Sci 13:918–928

    CAS  Google Scholar 

  273. Zhang B, Xu Y, Zheng Y, Dai L, Zhang M, Yang J, Chen Y, Chen X, Zhou J (2011) A facile synthesis of polypyrrole/carbon nanotube composites with ultrathin, uniform and thickness-tunable polypyrrole shells. Nanoscale Res Lett 6(431):1–9

    Google Scholar 

  274. Moraes SR, Hurta-Vilca D, Motheo AJ (2004) Characteristics of polyaniline synthesized in phosphate buffer solution. Eur Polym J 40:2033–2041

    CAS  Google Scholar 

  275. Oh KW, Park HJ, Kim SH (2004) Electrical property and stability of electrochemically synthesized polypyrrole films. J Appl Polym Sci 91:3659–3666

    CAS  Google Scholar 

  276. Bazzaoui M, Martins L, Bazzaoui EA, Martins JI (2002) New single-step electrosynthesis process of homogeneous and strongly adherent polypyrrole films on iron electrodes in aqueous medium. Electrochim Acta 47:2953–2962

    CAS  Google Scholar 

  277. Ma SB, Nam KW, Yoon WS, Yang XQ, Ahn KY, Oh KH, Kim KB (2008) Electrochemical properties of manganese oxide coated onto carbon nanotubes for energy-storage applications. J Power Sources 178:483–489

    CAS  Google Scholar 

  278. Lin P, She Q, Hong B, Liu X, Shi Y, Zheng M, Dong Q (2010) The nickel oxide/CNT composites with high capacitance for supercapacitor. J Electrochem Soc 157(7):A818–A823

    CAS  Google Scholar 

  279. Gao B, Yuan CZ, Su LH, Chen L, Zhang XG (2009) Nickel oxide coated on ultrasonically pretreated carbon nanotubes for supercapacitor. J Solid State Electrochem 13:1251–1257

    CAS  Google Scholar 

  280. Wang D, Li Y, Wang Q, Wang T (2012) Nanostructured Fe2O3-graphene composite as a novel electrode material for supercapacitors. J Solid State Electrochem 16:2095–2102

    CAS  Google Scholar 

  281. Wang X, Han X, Lim M, Singh N, Gan CL, Jan M, Lee PS (2012) Nickel cobalt oxide-single wall carbon nanotubes composite material for superior cycling stability and high-performance supercapacitor application. J Phys Chem C 116:12448–12454

    CAS  Google Scholar 

  282. Zolfaghari A, Ataherian F, Ghaemi M, Gholami A (2007) Capacitive behavior of nanostructured MnO2 prepared by sonochemistry method. Electrochim Acta 52:2806–2814

    CAS  Google Scholar 

  283. Yu G, Hu L, Vosgueritchian M, Wang H, Xie X, McDonough JR, Cui X, Cui Y, Bao Z (2011) Solution-processed graphene/MnO2 nanostructured textiles for high-performance electrochemical capacitors. Nano Lett 11:2905–2911

    CAS  Google Scholar 

  284. Hu CC, Chen WC, Chang KH (2004) How to achieve maximum utilization of hydrous ruthenium oxide for supercapacitors. J Electrochem Soc 151(2):A281–A290

    CAS  Google Scholar 

  285. Li J, Wang X, Huang Q, Dai C, Gamboa S, Sebastian PJ (2007) Preparation and characterization of RuO2 · xH2O/carbon aerogel composites for supercapacitors. J Appl Electrochem 37:1129–1135

    CAS  Google Scholar 

  286. Chen W, Fan Z, Gu L, Bao X, Wang C (2010) Enhanced capacitance of manganese oxide via confinement inside carbon nanotubes. Chem Commun 46:3905–3907

    CAS  Google Scholar 

  287. Hou Y, Cheng Y, Hobson T, Liu J (2010) Design and synthesis of hierarchical MnO2 nanospheres/carbon nanotubes/conducting polymer ternary composite for high performance electrochemical electrodes. Nano Lett 10:2727–2733

    CAS  Google Scholar 

  288. Ko JM, Ryu KS, Kim S, Kim KM (2009) Supercapacitive properties of composite electrodes consisting of polyaniline, carbon nanotube, and RuO2. J Appl Electrochem 39:1331–1337

    CAS  Google Scholar 

  289. Mirmohseni A, Dorraji MSS, Hosseini MG (2012) Influence of metal oxide nanoparticle on pseudocapacitive behavior of wet-spun polyaniline-multiwall carbon nanotube fibers. Electrochim Acta 70:182–192

    CAS  Google Scholar 

  290. Oh M, Kim S (2012) Preparation and electrochemical characterization of polyaniline/activated carbon composites as an electrode material for supercapacitors. J Nanosci Nanotechnol 12:519–524

    CAS  Google Scholar 

  291. Li GR, Feng ZP, Ou YN, Wu D, Fu R, Tong YX (2010) Mesoporous MnO2/carbon aerogel composites as promising electrode materials for high-performance supercapacitors. Langmuir 16(4):2209–2213

    Google Scholar 

  292. Zhu X, Dai H, Hu J, Ding L, Jiang L (2012) Reduced graphene oxide-nickel oxide composite as high performance electrode materials for supercapacitors. J Power Sources 203:243–249

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krzysztof Winkler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

Winkler, K., Grądzka, E. (2015). Electron Transfer and Charge Storage in Thin Films of Nanoparticles. In: Aliofkhazraei, M., Makhlouf, A. (eds) Handbook of Nanoelectrochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-15207-3_37-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15207-3_37-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-15207-3

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics