Skip to main content

Electrochemically Fabricated Nanostructures in Energy Storage and Conversion Applications

  • Living reference work entry
  • First Online:
Handbook of Nanoelectrochemistry
  • 427 Accesses

Abstract

In order to move away from the carbon-based energy technologies, electrochemical energy production and storage is under serious consideration as an alternative energy/power source. The future success of this global effort is under review, and researchers are looking forward to designing more sustainable and environmentally friendly electrochemical energy storage and conversion (EESC) systems. Electrochemical energy storage and conversion systems in the broadest sense have three variants: batteries, fuel cells, and electrochemical capacitors, also known as supercapacitors. The energy storage and conversion mechanisms in these three systems are different, but the energy – providing processes in these systems – all follow solid state and surface interface chemistry, taking place in active electrode materials and at the phase boundary of the electrode/electrolyte interface. Also, all three systems consist of two electrodes which are in contact with the electrolyte but separated by a membrane. Conventional materials used in these systems cannot meet the ever-increasing demand for energy. Thereby, designing efficient and miniaturized EESC devices that achieve high energy storage or delivery at high charge and discharge rates and with lifetimes capable of matching the specific requirements of applications is one of the major challenges facing today’s research community.

Thereby, this chapter will review some of the recent developments (2010–2012) in the fabrication of nanostructured electrode materials by electrochemical methods and their application in the fuel cells and supercapacitors. Furthermore, novel nanowire-/nanoparticle-based electrodeposited nano-heterostructures (Armand M, Tarascon JM, Nature 451:652, 2008; Chmiola J, Largeot C, Taberna PL, Simon P, Gogotsi Y, Science 328:480, 2010; Tarascon JM, Armand M, Nature 414:359, 2001) and their advantages over conventional electrode materials will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Armand M, Tarascon JM (2008) Building better batteries. Nature 451(7179):652–657. doi:10.1038/451652a

    Article  CAS  Google Scholar 

  2. Chmiola J, Largeot C, Taberna PL, Simon P, Gogotsi Y (2010) Monolithic carbide-derived carbon films for micro-supercapacitors. Science 328(5977):480–483. doi:10.1126/science.1184126

    Article  CAS  Google Scholar 

  3. Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414(6861):359–367

    Article  CAS  Google Scholar 

  4. Zhang Y, Feng H, Wu XB, Wang LZ, Zhang AQ, Xia TC, Dong HC, Li XF, Zhang LS (2009) Progress of electrochemical capacitor electrode materials: a review. Int J Hydrog Energy 34(11):4889–4899. doi:10.1016/j.ijhydene.2009.04.005

    Article  CAS  Google Scholar 

  5. Zhang CX, Hu J, Cong J, Zhao YP, Shen W, Toyoda H, Nagatsu M, Meng YD (2011) Pulsed plasma-polymerized alkaline anion-exchange membranes for potential application in direct alcohol fuel cells. J Power Sources 196(13):5386–5393. doi:10.1016/j.jpowsour.2011.02.073

    Article  CAS  Google Scholar 

  6. Wei TY, Chen CH, Chang KH, Lu SY, Hu CC (2009) Cobalt oxide aerogels of ideal supercapacitive properties prepared with an epoxide synthetic route. Chem Mater 21(14):3228–3233. doi:10.1021/cm9007365

    Article  CAS  Google Scholar 

  7. Brousse T, Toupin M, Dugas R, Athouel L, Crosnier O, Belanger D (2006) Crystalline MnO2 as possible alternatives to amorphous compounds in electrochemical supercapacitors. J Electrochem Soc 153(12):A2171–A2180. doi:10.1149/1.2352197

    Article  CAS  Google Scholar 

  8. Lei Y, Daffos B, Taberna PL, Simon P, Favier F (2010) MnO2-coated Ni nanorods: enhanced high rate behavior in pseudo-capacitive supercapacitor. Electrochim Acta 55(25):7454–7459. doi:10.1016/j.electacta.2010.03.012

    Article  CAS  Google Scholar 

  9. Zhao DD, Bao SJ, Zhou WH, Li HL (2007) Preparation of hexagonal nanoporous nickel hydroxide film and its application for electrochemical capacitor. Electrochem Commun 9(5):869–874. doi:10.1016/j.elecom.2006.11.030

    Article  CAS  Google Scholar 

  10. Tao BR, Zhang JA, Miao FJ, Hui SC, Wan LJ (2010) Preparation and electrochemistry of NiO/SiNW nanocomposite electrodes for electrochemical capacitors. Electrochim Acta 55(18):5258–5262. doi:10.1016/j.electacta.2010.04.057

    Article  CAS  Google Scholar 

  11. Kim JH, Zhu K, Yan YF, Perkins CL, Frank AJ (2010) Microstructure and pseudocapacitive properties of electrodes constructed of oriented NiO-TiO2 nanotube arrays. Nano Lett 10(10):4099–4104. doi:10.1021/nl102203s

    Article  CAS  Google Scholar 

  12. Wang DC, Ni WB, Pang H, Lu QY, Huang ZJ, Zhao JW (2010) Preparation of mesoporous NiO with a bimodal pore size distribution and application in electrochemical capacitors. Electrochim Acta 55(22):6830–6835. doi:10.1016/j.electacta.2010.05.084

    Article  CAS  Google Scholar 

  13. Wu MS, Huang YA, Yang CH, Jow HH (2007) Electrodeposition of nanoporous nickel oxide film for electrochemical capacitors. Int J Hydrog Energy 32(17):4153–4159. doi:10.1016/j.ijhydene.2007.06.001

    Article  CAS  Google Scholar 

  14. Hasan M, Jamal M, Razeeb KM (2012) Coaxial NiO/Ni nanowire arrays for high performance pseudocapacitor applications. Electrochim Acta 60:193–200. doi:10.1016/j.electacta.2011.11.039

    Article  CAS  Google Scholar 

  15. Liu H, Ye J, Xu C, Jiang SP, Tong Y (2007) Kinetics of ethanol electrooxidation at Pd electrodeposited on Ti. Electrochem Commun 9(9):2334–2339. doi:10.1016/j.elecom.2007.06.036

    Article  CAS  Google Scholar 

  16. Lu Z, Chang Z, Liu J, Sun X (2011) Stable ultrahigh specific capacitance of NiO nanorod arrays. Nano Research 4(7):658–665. doi:10.1007/s12274-011-0121-1

    Article  CAS  Google Scholar 

  17. Gao HL, Liao SJ, Liang ZX, Liang HG, Luoa F (2011) Anodic oxidation of ethanol on core-shell structured Ru@PtPd/C catalyst in alkaline media. J Power Sources 196(15):6138–6143. doi:10.1016/j.jpowsour.2011.03.031

    Article  CAS  Google Scholar 

  18. Antolini E (2007) Catalysts for direct ethanol fuel cells. J Power Sources 170(1):1–12. doi:10.1016/j.jpowsour.2007.04.009

    Article  CAS  Google Scholar 

  19. Zhou WJ, Song SQ, Li WZ, Zhou ZH, Sun GQ, Xin Q, Douvartzides S, Tsiakaras P (2005) Direct ethanol fuel cells based on PtSn anodes: the effect of Sn content on the fuel cell performance. J Power Sources 140(1):50–58. doi:10.1016/j.jpowsour.2004.08.003

    Article  CAS  Google Scholar 

  20. Lai SCS, Koper MTM (2009) Ethanol electro-oxidation on platinum in alkaline media. Phys Chem Chem Phys 11(44):10446–10456. doi:10.1039/b913170a

    Article  CAS  Google Scholar 

  21. Vigier F, Coutanceau C, Perrard A, Belgsir EM, Lamy C (2004) Development of anode catalysts for a direct ethanol fuel cell. J Appl Electrochem 34(4):439–446. doi:10.1023/B:JACH.0000016629.98535.ad

    Article  CAS  Google Scholar 

  22. Xu CW, Cheng LQ, Shen PK, Liu YL (2007) Methanol and ethanol electrooxidation on Pt and Pd supported on carbon microspheres in alkaline media. Electrochem Commun 9(5):997–1001. doi:10.1016/j.elecom.2006.12.003

    Article  CAS  Google Scholar 

  23. Spendelow JS, Wieckowski A (2007) Electrocatalysis of oxygen reduction and small alcohol oxidation in alkaline media. Phys Chem Chem Phys 9(21):2654–2675. doi:10.1039/b703315j

    Article  CAS  Google Scholar 

  24. Elezovic NR, Babic BM, Radmilovic VR, Vracar LM, Krstajic NV (2011) Nb-TiO(2) supported platinum nanocatalyst for oxygen reduction reaction in alkaline solutions. Electrochim Acta 56(25):9020–9026. doi:10.1016/j.electacta.2011.04.075

    Article  CAS  Google Scholar 

  25. Steele BCH, Heinzel A (2001) Materials for fuel-cell technologies. Nature 414(6861):345–352. doi:10.1038/35104620

    Article  CAS  Google Scholar 

  26. Huang M, Dong G, Wang N, Xu J, Guan L (2011) Highly dispersive Pt atoms on the surface of RuNi nanoparticles with remarkably enhanced catalytic performance for ethanol oxidation. Energy Environ Sci 4(11):4513–4516. doi:10.1039/c1ee02044g

    Article  CAS  Google Scholar 

  27. Yano J, Takatsuka Y, Harima Y, Kitani A (2011) Pt and Sn-dispersed polyaniline electrodes for the anodes of the direct ethanol fuel cell. Electrochemistry 79(5):424–427

    Article  CAS  Google Scholar 

  28. Leger JM, Rousseau S, Coutanceau C, Hahn F, Lamy C (2005) How bimetallic electrocatalysts does work for reactions involved in fuel cells? Example of ethanol oxidation and comparison to methanol. Electrochim Acta 50(25–26):5118–5125. doi:10.1016/j.electacta.2005.01.051

    Article  CAS  Google Scholar 

  29. Rousseau S, Coutanceau C, Lamy C, Leger JM (2006) Direct ethanol fuel cell (DEFC): electrical performances and reaction products distribution under operating conditions with different platinum-based anodes. J Power Sources 158(1):18–24. doi:10.1016/j.jpowsour.2005.08.027

    Article  CAS  Google Scholar 

  30. Ghosh S, Raj CR (2010) Facile in situ synthesis of multiwall carbon nanotube supported flowerlike Pt nanostructures: an efficient electrocatalyst for fuel cell application. J Phys Chem C 114(24):10843–10849. doi:10.1021/jp100551e

    Article  CAS  Google Scholar 

  31. Cheng N, Li H, Li G, Lv H, Mu S, Sun X, Pan M (2011) Highly active Pt@Au nanoparticles encapsulated in perfluorosulfonic acid for the reduction of oxygen. Chem Commun 47(48):12792–12794. doi:10.1039/c1cc15203c

    Article  CAS  Google Scholar 

  32. Morozan A, Jousselme B, Palacin S (2011) Low-platinum and platinum-free catalysts for the oxygen reduction reaction at fuel cell cathodes. Energy Environ Sci 4(4):1238–1254. doi:10.1039/c0ee00601g

    Article  CAS  Google Scholar 

  33. Wang D, Xin HL, Yu Y, Wang H, Rus E, Muller DA, Abruna HD (2010) Pt-decorated PdCo@Pd/C core-shell nanoparticles with enhanced stability and electrocatalytic activity for the oxygen reduction reaction. J Am Chem Soc 132(50):17664–17666. doi:10.1021/ja107874u

    Article  CAS  Google Scholar 

  34. Manoharan R, Goodenough JB (1992) Methanol oxidation in acid on ordered NiTi. J Mater Chem 2(8):875–887

    Article  CAS  Google Scholar 

  35. Koenigsmann C, Wong SS (2011) One-dimensional noble metal electrocatalysts: a promising structural paradigm for direct methanol fuel cells. Energy Environ Sci 4(4):1161–1176. doi:10.1039/c0ee00197j

    Article  CAS  Google Scholar 

  36. Zhao X, Yin M, Ma L, Liang L, Liu C, Liao J, Lu T, Xing W (2011) Recent advances in catalysts for direct methanol fuel cells. Energy Environ Sci 4(8):2736–2753. doi:10.1039/c1ee01307f

    Article  CAS  Google Scholar 

  37. Watanabe M, Motoo S (1975) Electrocatalysis by ad-atoms: part II. Enhancement of the oxidation of methanol on platinum by ruthenium ad-atoms. J Electroanal Chem 60(3):267–273. doi:10.1016/s0022-0728(75)80261-0

    Google Scholar 

  38. Chen C-H, Sarma LS, Wang D-Y, Lai F-J, Al Andra C-C, Chang S-H, Liu D-G, Chen C-C, Lee J-F, Hwang B-J (2010) Platinum-decorated ruthenium nanoparticles for enhanced methanol electrooxidation. ChemCatChem 2(2):159–166. doi:10.1002/cctc.200900051

    Article  CAS  Google Scholar 

  39. Sasaki K, Wang JX, Balasubramanian M, McBreen J, Uribe F, Adzic RR (2004) Ultra-low platinum content fuel cell anode electrocatalyst with a long-term performance stability. Electrochim Acta 49(22–23):3873–3877. doi:10.1016/j.electacta.2004.01.086

    Article  CAS  Google Scholar 

  40. Ianniello R, Schmidt VM, Stimming U, Stumper J, Wallau A (1994) CO adsorption and oxidation on Pt and PtRu alloys: dependence on substrate composition. Electrochim Acta 39(11–12):1863–1869. doi:10.1016/0013-4686(94)85176-x

    Article  CAS  Google Scholar 

  41. Mahendiran C, Maiyalagan T, Scott K, Gedanken A (2011) Synthesis of a carbon-coated NiO/MgO core/shell nanocomposite as a Pd electro-catalyst support for ethanol oxidation. Mater Chem Phys 128(3):341–347. doi:10.1016/j.matchemphys.2011.02.067

    Article  CAS  Google Scholar 

  42. Kristian N, Yu Y, Lee J-M, Liu X, Wang X (2010) Synthesis and characterization of Co(core)-Pt(shell) electrocatalyst prepared by spontaneous replacement reaction for oxygen reduction reaction. Electrochim Acta 56(2):1000–1007. doi:10.1016/j.electacta.2010.09.073

    Article  CAS  Google Scholar 

  43. Strasser P (2009) Dealloyed core-shell fuel cell electrocatalysts. Rev Chem Eng 25(4):255–295. doi:10.1515/revce.2009.25.4.255

    Article  CAS  Google Scholar 

  44. Strasser P (2008) Fuel cell catalyst particles have platinum-rich shell, copper core. Adv Mater Process 166(1):13–13

    Google Scholar 

  45. Li Y, Hu FP, Wang X, Shen PK (2008) Anchoring metal nanoparticles on hydrofluoric acid treated multiwalled carbon nanotubes as stable electrocatalysts. Electrochem Commun 10(7):1101–1104. doi:10.1016/j.elecom.2008.05.025

    Article  CAS  Google Scholar 

  46. Zhao Y, Fan L, Zhong H, Li Y, Yang S (2007) Platinum nanoparticle clusters immobilized on multiwalled carbon nanotubes: electrodeposition and enhanced electrocatalytic activity for methanol oxidation. Adv Funct Mater 17(9):1537–1541. doi:10.1002/adfm.200600416

    Article  CAS  Google Scholar 

  47. Rauhe BR, McLarnon FR, Cairns EJ (1995) Direct anodic-oxidation of methanol on supported platinum ruthenium catalyst in aqueous cesium carbonate. J Electrochem Soc 142(4):1073–1084. doi:10.1149/1.2044547

    Article  CAS  Google Scholar 

  48. Guo S, Dong S, Wang E (2010) Novel Te/Pt hybrid nanowire with nanoporous surface: a catalytically active nanoelectrocatalyst. J Phys Chem C 114(11):4797–4802. doi:10.1021/jp909623x

    Article  CAS  Google Scholar 

  49. Liu L, Pippel E, Scholz R, Goesele U (2009) Nanoporous Pt-Co alloy nanowires: fabrication, characterization, and electrocatalytic properties. Nano Lett 9(12):4352–4358. doi:10.1021/nl902619q

    Article  CAS  Google Scholar 

  50. Mohl M, Kumar A, Reddy ALM, Kukovecz A, Konya Z, Kiricsi I, Vajtai R, Ajayan PM (2010) Synthesis of catalytic porous metallic nanorods by galvanic exchange reaction. J Phys Chem C 114(1):389–393. doi:10.1021/jp9083508

    Article  CAS  Google Scholar 

  51. Zhou W-P, Axnanda S, White MG, Adzic RR, Hrbek J (2011) Enhancement in ethanol electrooxidation by SnO(x) nanoislands grown on Pt(111): effect of metal oxide-metal interface sites. J Phys Chem C 115(33):16467–16473. doi:10.1021/jp203770x

    Article  CAS  Google Scholar 

  52. Xu CW, Shen PK, Ji XH, Zeng R, Liu YL (2005) Enhanced activity for ethanol electro oxidation on Pt-MgO/C catalysts. Electrochem Commun 7(12):1305–1308. doi:10.1016/j.elecom.2005.09.015

    Article  CAS  Google Scholar 

  53. Bai Y, Wu J, Qiu X, Xi J, Wang J, Li J, Zhu W, Chen L (2007) Electrochemical characterization of Pt-CeO2/C and Pt-CexZr1-xO2/C catalysts for ethanol electro-oxidation. Appl Catal B Environ 73(1–2):144–149. doi:10.1016/j.apcatb.2006.06.026

    Article  CAS  Google Scholar 

  54. Xu CW, Shen PK (2005) Electrochemical oxidation of ethanol on Pt-CeO2/C catalysts. J Power Sources 142(1–2):27–29. doi:10.1016/j.jpowsour.2004.10.017

    Article  CAS  Google Scholar 

  55. Bai YX, Wu JJ, Xi JY, Wang JS, Zhu WT, Chen LQ, Qiu XP (2005) Electrochemical oxidation of ethanol on Pt-ZrO2/C catalyst. Electrochem Commun 7(11):1087–1090. doi:10.1016/j.elecom.2005.08.002

    Article  CAS  Google Scholar 

  56. Tabet-Aoul A, Saidani F, Rochefort D, Mohamedi M (2011) Pulsed laser synthesis of SnO(2)-Pt nano-thin films onto carbon nanotubes and their electrocatalytic activity towards ethanol oxidation. Int J Electrochem Sci 6(12):6385–6397

    CAS  Google Scholar 

  57. Wang X-y, Zhang J-c, Cao X-d, Jiang Y-s, Zhu H (2011) Synthesis and characterization of Pt-MoO(x)-TiO(2) electrodes for direct ethanol fuel cells. Int J Miner Metall Mater 18(5):594–599. doi:10.1007/s12613-011-0483-0

    Article  CAS  Google Scholar 

  58. Guo D-J (2011) Electrooxidation of ethanol on novel multi-walled carbon nanotube supported platinum-antimony tin oxide nanoparticle catalysts. J Power Sources 196(2):679–682. doi:10.1016/j.jpowsour.2010.07.075

    Article  CAS  Google Scholar 

  59. Wang XH, Li XW, Sun XL, Li F, Liu QM, Wang Q, He DY (2011) Nanostructured NiO electrode for high rate Li-ion batteries. J Mater Chem 21(11):3571–3573. doi:10.1039/c0jm04356g

    Article  CAS  Google Scholar 

  60. Lu Q, Lattanzi MW, Chen YP, Kou XM, Li WF, Fan X, Unruh KM, Chen JGG, Xiao JQ (2011) Supercapacitor electrodes with high-energy and power densities prepared from monolithic NiO/Ni nanocomposites. Angew Chem Int Edit 50(30):6847–6850. doi:10.1002/anie.201101083

    Article  CAS  Google Scholar 

  61. Xu CW, Shen PK, Liu YL (2007) Ethanol electrooxidation on Pt/C and Pd/C catalysts promoted with oxide. J Power Sources 164(2):527–531. doi:10.1016/j.jpowsour.2006.10.071

    Article  CAS  Google Scholar 

  62. Xu C, Tian Z, Shen P, Jiang SP (2008) Oxide (CeO2, NiO, Co3O4 and Mn3O4)-promoted Pd/C electrocatalysts for alcohol electrooxidation in alkaline media. Electrochim Acta 53(5):2610–2618. doi:10.1016/j.electacta.2007.10.036

    Article  CAS  Google Scholar 

  63. Hasan M, Newcomb SB, Razeeb KM (2012) Porous core/shell Ni@NiO/Pt hybrid nanowire arrays as a high efficient electrocatalyst for alkaline direct ethanol fuel cells. J Electrochem Soc 159(7):F203-F209. doi:10.1149/2.015207jes

    Article  CAS  Google Scholar 

  64. Xi-ke T, Xiao-yu Z, Li-de Z, Chao Y, Zhen-bang P, Su-xin Z (2008) Performance of ethanol electro-oxidation on Ni–Cu alloy nanowires through composition modulation. Nanotechnology 19(21):215711

    Article  Google Scholar 

  65. Zhu C, Guo S, Dong S (2012) Facile synthesis of trimetallic AuPtPd alloy nanowires and their catalysis for ethanol electrooxidation. J Mater Chem 22(30):14851–14855. doi:10.1039/C2JM32663A

    Article  CAS  Google Scholar 

  66. Zhang Z, Xin L, Sun K, Li W (2011) Pd–Ni electrocatalysts for efficient ethanol oxidation reaction in alkaline electrolyte. Int J Hydrog Energy 36(20):12686–12697. doi:http://dx.doi.org/10.1016/j.ijhydene.2011.06.141

    Google Scholar 

  67. Ding L-X, Li G-R, Wang Z-L, Liu Z-Q, Liu H, Tong Y-X (2012) Porous Ni@Pt core-shell nanotube array electrocatalyst with high activity and stability for methanol oxidation. Chem A Eur J 18(27):8386–8391. doi:10.1002/chem.201200009

    Article  CAS  Google Scholar 

  68. Liu JW, Essner J, Li J (2010) Hybrid supercapacitor based on coaxially coated manganese oxide on vertically aligned carbon nanofiber arrays. Chem Mater 22(17):5022–5030. doi:10.1021/cm101591p

    Article  CAS  Google Scholar 

  69. Jiang J, Kucernak A (2002) Electrochemical supercapacitor material based on manganese oxide: preparation and characterization. Electrochim Acta 47(15):2381–2386. doi:10.1016/s0013-4686(02)00031-2

    Google Scholar 

  70. Singh RN, Singh A, Anindita (2009) Electrocatalytic activity of binary and ternary composite films of Pd, MWCNT and Ni, part II: methanol electrooxidation in 1 M KOH. Int J Hydrog Energy 34(4):2052–2057. doi:10.1016/j.ijhydene.2008.12.047

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is financially supported by Enterprise Ireland (EI) under the commercialization fund CFTD/2008/322.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kafil M. Razeeb .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

Razeeb, K.M., Hasan, M., Jamal, M., Mathewson, A. (2015). Electrochemically Fabricated Nanostructures in Energy Storage and Conversion Applications. In: Aliofkhazraei, M., Makhlouf, A. (eds) Handbook of Nanoelectrochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-15207-3_4-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15207-3_4-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-15207-3

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics