Skip to main content

Electroforming and Electrodeposition on Complex 3D Geometries: Special Requirements and New Methods

  • Living reference work entry
  • First Online:
Handbook of Nanoelectrochemistry

Abstract

The chapter presents fields of electrodeposition where nanostructuring of nickel is challenging (electroforming, replication of fine-structured surfaces, filling of small- and large-scaled notches, e.g., in microsystem technology and for electroformed slush-tools for automotive of dashboards for automotive applications). It outlines the special requirements for the electroforming process of thick complex 3D-shaped deposits including bath analytics and stress measurements which are essential for the production of thick deposits, where the properties are hardly affected by impurities and internal stresses. Methods for the filling of the notches are presented. We further describe a new electrodeposition method to produce continuous fiber-reinforced metal matrix composites. Incorporating the fibers modifies the electrocrystallization and produces nanocrystalline structures around the fibers. As a hot special topic a new electrodeposition method is described to coat 3D porous structures as metal foams that there is an almost homogeneous coating thickness over the total cross section of the foams. The special experimental setup, special mass transport, and deposition mechanism in order to produce nanocrystalline nickel coatings around the foam struts are explained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Ellis TS, Kakarala N, Patel S (2006) Thermoplastic polyolefins (TPO) for slush molding of interior skins: materials and processing requirements. Society of Plastics Engineers, Automotive Thermoplastic Polyolefins (TPO) Global Conference 2005, pp 36–58

    Google Scholar 

  2. Hättig J, Kaufhold W (2001) Dashboards meet highest requirements: new market for slush-moulded skins made from TPU. Kunststoffe Plast Eur 91(3):16–17

    Google Scholar 

  3. Lohner A, Bojahr T (2011) Two colors with one stroke. Kunststoffe Int 101(3):55–57

    Google Scholar 

  4. Monzon M, Hernandez P, Benitez A, Marrero M, Alvarez M, Kearns M (2009) An innovative electroforming process for oil heated rotational moulding tools. Proceedings of the 9th Biennial Conference on Engineering Systems Design and Analysis, vol. 1, pp 185–191

    Google Scholar 

  5. Leoni NJ, Birecki H, Gila O, Lee MH, Hanson EG, Fotland R (2011) Small dot ion print-head. International Conference on Digital Printing Technologies, pp 50–53

    Google Scholar 

  6. Liu C, Li M, Shi W, Du L, Wang L (2011) New method for dimensional precision control of electroformed parts by using micro electroforming technique with SU-8 thick photoresist. Jixie Gongcheng Xuebao/J Mech Eng 47(3):179–185

    Article  CAS  Google Scholar 

  7. Sun Kim J, Ki Min I, Deok Kim J (2012) Development of a selective electroforming process for micro-sized probe tips used in LCD inspection machines. J Phys: Conf Ser 379(1)

    Google Scholar 

  8. Gol’denberg BG, Reznikova EF, Lemzyakov AG, Pindyurin VF (2013) Microbeam x-ray lithography apparatus for direct production of deep LIGA structures. Optoelectron Instrum Data Process 49(1):81–86

    Article  Google Scholar 

  9. Kuboyama Y, Nishida S, Noda D, Hattori T (2012) Fabrication of micro-capacitive inclination sensor using the LIGA process. Key Eng Mater 523–524:592–597

    Article  Google Scholar 

  10. Zhixiang X, Fengjuan J (2013) Design and fabrication of micro-coil sensor array by using UV-LIGA process. Appl Mech Mater 300–301:585–588

    Google Scholar 

  11. Bayer S, Kraus D, Keilig L, Glz L, Stark H, Enkling N (2012) Changes in retention force with electroplated copings on conical crowns: a comparison of gold and zirconia primary crowns. Int J Oral Maxillofac Implants 27(3):577–585

    Google Scholar 

  12. Gorlach P (2003) Electroformed galvanic gold base for anatomically retained orbital prosthesis. J Facial Somato Prosthet 9(2):69–74

    Google Scholar 

  13. Watanabe M (1989) Application of electroforming for coronal restorations. Metal frame for porcelain fused to metal crowns. Kanagawa Shigaku J Kanagawa Odontol Soc 24(1):77–95

    CAS  Google Scholar 

  14. Arranz F, Brafias B, Busch M, Gonzalez M, Munoz A, Szcepaniak B, Castro L, Galan P, Iglesias D, Lapena J, Lopez D, Rucandio I, Plaza D, Garcia M, Gomez B (2011) Evaluation of the electroforming technique for IFMIF-EVEDA beam dump manufacturing. Fusion Sci Technol 60(2):538–543

    CAS  Google Scholar 

  15. Chen TY, Wang DC (2009) An experimental study on the electroforming of ternary Ni-Co-Mn alloy. Int J Nucl Desal 3(3):301–309

    Article  CAS  Google Scholar 

  16. Lee SJ, Lee YM, Lee CY, Lai JJ, Kuan FH, Chuang CW (2007) The performance of miniature metallic PEM fuel cells. J Power Sources 171(1):148–154

    Article  CAS  Google Scholar 

  17. Arnet E (2004) Electroforming of hollow jewellery – functionality and quality. Galvanotechnik 95(9):2156–2162, +VI

    CAS  Google Scholar 

  18. Kuhn AT, Lewis LV (1988) The electroforming of gold and its alloys. Gold Bull 21(1):17–23

    Article  CAS  Google Scholar 

  19. Leuw DH (1991) Fabrication of special purpose optical components. Proceedings of SPIE - The International Society for Optical Engineering, vol. 1442, pp 31–41

    Google Scholar 

  20. Suchentrunk R, Tuscher O (1979) Electroforming in aerospace engineering. Galvanotechnik 70(12):1178–1184

    CAS  Google Scholar 

  21. Hanafi I, Daud AR, Radiman S, Ghani MHA, Budi S (2013) Surfactant assisted electrodeposition of nanostructured CoNiCu alloys. J Phys Conf Ser 431(1)

    Google Scholar 

  22. Natter H, Krajewski T, Hempelmann M (1996) Nanocrystalline palladium by pulsed electrodeposition. Berichte der Bunsengesellschaft/Phys Chem Chem Phys 100(1):55–64

    Article  CAS  Google Scholar 

  23. Natter H, Hempelmann R (1996) Nanocrystalline copper by pulsed electrodeposition: the effects of organic additives, bath temperature, and pH. J Phys Chem 100(50):19,525–19,532

    Article  CAS  Google Scholar 

  24. Rezaei-Sameti M, Nadali S, Falahatpisheh A, Rakhshi M (2013) The effects of sodium dodecyl sulfate and sodium saccharin on morphology, hardness and wear behavior of Cr-Wc nano composite coatings. Solid State Commun 159:18–21

    Article  CAS  Google Scholar 

  25. Durney LJ (ed) (1984) Graham’s electroplating engineering handbook, 4th edn. Chapman & Hall, London

    Google Scholar 

  26. Tomantschger K, Palumbo G, Gonzalez F, Natter H, Hempelmann R, Endres F, Erb U, Aust KT (2004) Electrochemical synthesis of nanocrystalline materials. Eugen G. Leuze, Bad Saulgau

    Google Scholar 

  27. Zimmerman AF, Palumbo G, Aust KT, Erb U (2002) Mechanical properties of nickel silicon carbide nanocomposites. Mater Sci Eng A 328(1):137–146

    Article  Google Scholar 

  28. Giallonardo JD, Erb U, Aust KT, Palumbo G (2011) The influence of grain size and texture on the young’s modulus of nanocrystalline nickel and nickel-iron alloys. Philos Mag 91(36):4594–4605

    Article  CAS  Google Scholar 

  29. El-Sherik AM, Erb U, Palumbo G, Aust KT (1992) Deviations from Hall–Petch behaviour in as-prepared nanocrystalline nickel. Scr Metall Mater 27(9):1185–1188

    Article  CAS  Google Scholar 

  30. Jeong DH, Gonzalez F, Palumbo G, Aust KT, Erb U (2001) The effect of grain size on the wear properties of electrodeposited nanocrystalline nickel coatings. Scr Mater 44(3):493–499

    Article  CAS  Google Scholar 

  31. Karimpoor AA, Erb U, Aust KT, Wang Z, Palumbo G (2002) Tensile properties of bulk nanocrystalline hexagonal cobalt electrodeposits. Mater Sci Forum 386–388:415–420

    Article  Google Scholar 

  32. Alanazi N, Abdelmounan HK, Sherik AM (2012) Wear performance of electroplated nanocrystalline Ni-P alloy coatings. Mater Perform 51(10):36–39

    CAS  Google Scholar 

  33. Brooks I, Lin P, Palumbo G, Hibbard GD, Erb U (2008) Analysis of hardness-tensile strength relationships for electroformed nanocrystalline materials. Mater Sci Eng A 491(1–2):412–419

    Article  Google Scholar 

  34. Guo Y, Wang Y, Xie L (2011) Micro electroformed Ni-P alloy parts by extended UV-LIGA technology. Adv Mater Res 317–319:1635–1639

    Article  Google Scholar 

  35. Suresha SJ, Haj-Taieb M, Bade K, Aktaa J, Hemker KJ (2010) The influence of tungsten on the thermal stability and mechanical behavior of electrodeposited nickel MEMS structures. Scr Mater 63(12):1141–1144

    Article  CAS  Google Scholar 

  36. Cui X, Chen W (2008) Saccharin effects on direct-current electroplating nanocrystalline Ni-Cu alloys. J Electrochem Soc 155(9):K133–K139

    Article  CAS  Google Scholar 

  37. See SH, Seet HL, Li XP, Lee JY, Lee KYT, Teoh SH, Lim CT (2003) Effect of nanocrystalline electroplating of NiFe on the material permeability. Mater Sci Forum 437–438:53–56

    Article  Google Scholar 

  38. Erb U, El-Sherik AM, Palumbo G, Aust KT (1993) Synthesis, structure and properties of electroplated nanocrystalline materials. Nanostruct Mater 2(4):383–390

    Article  CAS  Google Scholar 

  39. Natter H, Hempelmann R (2003) Tailor-made nanomaterials designed by electrochemical methods. Electrochim Acta 49(1):51–61

    Article  CAS  Google Scholar 

  40. Natter H, Schmelzer M, Hempelmann R (1998) Nanocrystalline nickel and nickel-copper alloys: synthesis, characterization, and thermal stability. J Mater Res 13(5):1186–1197

    Article  CAS  Google Scholar 

  41. Shen X, Lian J, Jiang Z, Jiang Q (2008) The optimal grain sized nanocrystalline Ni with high strength and good ductility fabricated by a direct current electrodeposition. Adv Eng Mater 10(6):539–546

    Article  CAS  Google Scholar 

  42. Ashiru OA (1995) Gelatin inhibition of a silver plating process. Plating Surf Finish 82(4):76–82

    CAS  Google Scholar 

  43. Georgiev G, Kamenova I, Georgieva V, Kamenska E, Hempelmann R, Natter H (2006) Poly(dimethylaminoethylmethacryloylpropanesulfonate)-suitable polymer additive for pulsed electrodeposition of nanocrystalline nickel. J Appl Polym Sci 102(3):2967–2971

    Article  CAS  Google Scholar 

  44. Lee JW, Ju JB, Kim JD (2007) Electrodeposition of palladium on the copper lead frame: electrode reaction characteristics and the effects of primary additives. Korean J Chem Eng 24(6):960–964

    Article  CAS  Google Scholar 

  45. Yevtushenko O, Natter H, Hempelmann R (2006) Grain-growth kinetics of nanostructured gold. Thin Solid Films 515(1):353–356

    Article  CAS  Google Scholar 

  46. Kashchiev D (2000) Nucleation basic theory with applications. Butterworth-Heinemann, Oxford

    Google Scholar 

  47. Natter H, Hempelmann R (2008) Nanocrystalline metals prepared by electrodeposition. Z Phys Chem 222(2–3):319–354

    Article  CAS  Google Scholar 

  48. Majumdar S (2001) Structural analysis of electrosleeved tubes under severe accident transients. Nucl Eng Des 208(2):167–179

    Article  CAS  Google Scholar 

  49. Palumbo G, Gonzalez F, Brennenstuhl AM, Erb U, Shmayda W, Lichtenberger PC (1997) In-situ nuclear steam generator repair using electrodeposited nanocrystalline nickel. Nanostruct Mater 9(1–8):737–746

    Article  CAS  Google Scholar 

  50. Yang B, Leu MC (2000) Rapid electroforming tooling. Materials Research Society Symposium - Proceedings, vol. 625, pp 57–66

    Google Scholar 

  51. Sykes JM, Rothwell GP (1971) Relaxation of internal stresses in electrodeposits during stress measurement by null-deflection methods. J Electrochem Soc 118:91–93

    Article  Google Scholar 

  52. Makar’eva S (1938) Bull Acad Sci U.S.S.R., Classe Sci Math Nat, Ser Chim :1211–1223

    Google Scholar 

  53. Geneidy A, Koehler WA, Machu W (1959) The effect of magnesium salts on nickel plating baths. J Electrochem Soc 106:394–403

    Article  CAS  Google Scholar 

  54. Brenner A (1963) Electrodeposition of alloys – principles and practice, vols 1 and 2. Academic, New York/London

    Google Scholar 

  55. Atanassov N, Mitreva V (1996) Electrodeposition and properties of nickel-manganese layers. Surf Coat Technol 78(1–3):144–149

    Article  CAS  Google Scholar 

  56. Atanassov N, Schils H (1996) Deposition of Ni-based alloys with addition of manganese and sulfur. Plating Surf Finish 83(7):49–53

    CAS  Google Scholar 

  57. Srivastava M, Grips VKW, Rajam KS (2010) Influence of cobalt on manganese incorporation in Ni-Co coatings. J Appl Electrochem 40(4):777–782

    Article  CAS  Google Scholar 

  58. Yang NYC, Headley TJ, Kelly JJ, Hruby JM (2004) Metallurgy of high strength Ni-Mn microsystems fabricated by electrodeposition. Scr Mater 51(8):761–766

    Article  Google Scholar 

  59. Bernstein K, Andry P, Cann J, Emma P, Greenberg D, Haensch W, Ignatowski M, Koester S, Magerlein J, Puri R, Young A (2007) Interconnects in the third dimension: design challenges for 3D ICs. In: Proceedings of the 44th annual design automation conference, DAC’07. ACM, New York, pp 562–567

    Google Scholar 

  60. Moffat T, Josell D (2012) Extreme bottom-up superfilling of through-silicon-vias by damascene processing: Suppressor disruption, positive feedback and turing patterns. J Electrochem Soc 159(4):D208–D216

    Article  CAS  Google Scholar 

  61. Moffat T, Wheeler D, Edelstein M, Josell D (2005) Superconformal film growth: mechanism and quantification. IBM J Res Dev 49(1):19–36

    Article  CAS  Google Scholar 

  62. Vereecken PM, Binstead RA, Deligianni H, Andricacos PC (2005) The chemistry of additives in damascene copper plating. IBM J Res Dev 49:3–18

    Article  CAS  Google Scholar 

  63. Kelly JJ, Tian C, West AC (1999) Leveling and microstructural effects of additives for copper electrodeposition. J Electrochem Soc 146(7):2540–2545

    Article  CAS  Google Scholar 

  64. Moffat TP, Bonevich JE, Huber WH, Stanishevsky A, Kelly DR, Stafford GR, Josell D (2000) Superconformal electrodeposition of copper in 50090 nm features. J Electrochem Soc 147:4524–4535

    Article  CAS  Google Scholar 

  65. Taephaisitphongse P, Cao Y, West AC (2001) Electrochemical and fill studies of a multicomponent additive package for copper deposition. J Electrochem Soc 148(7):C492–C497

    Article  CAS  Google Scholar 

  66. Coey JMD, Hinds G (2001) Magnetic electrodeposition. J Alloys Compd 326(1–2):238–245

    Article  CAS  Google Scholar 

  67. Fahidy TZ (1983) Reviews of applied electrochemistry. 8. Magnetoelectrolysis. J Appl Electrochem 13(5):553–563

    Article  CAS  Google Scholar 

  68. Fahidy TZ (2002) The effect of magnetic fields on electrochemical processes. In: Conway BE, Bockris JO, White RE (eds) Modern aspects of electrochemistry, vol 32. Springer US, New York, pp 333–354

    Chapter  Google Scholar 

  69. Bund A, Ispas A (2005) Influence of a static magnetic field on nickel electrodeposition studied using an electrochemical quartz crystal microbalance, atomic force microscopy and vibrating sample magnetometry. J Electroanal Chem 575(2):221–228

    Article  CAS  Google Scholar 

  70. Chia-Chien L, Chou TC (1995) Effects of magnetic field on the reaction kinetics of electroless nickel deposition. Electrochim Acta 40(8):965–970

    Article  Google Scholar 

  71. Steiner UE, Ulrich T (1989) Magnetic field effects in chemical kinetics and related phenomena. Chem Rev 89:51–147

    Article  CAS  Google Scholar 

  72. Coey J, Rhen F, Dunne P, McMurry S (2007) The magnetic concentration gradient force – is it real? J Solid State Electrochem 11:711–717

    Article  CAS  Google Scholar 

  73. Hinds G, Coey JMD, Lyons MEG (2001) Influence of magnetic forces on electrochemical mass transport. Electrochem Commun 3(5):215–218

    Article  CAS  Google Scholar 

  74. Mutschke G, Tschulik K, Weier T, Uhlemann M, Bund A, Frhlich J (2010) On the action of magnetic gradient forces in micro-structured copper deposition. Electrochim Acta 55(28):9060–9066

    Article  CAS  Google Scholar 

  75. Pullins MD, Grant KM, White HS (2001) Microscale confinement of paramagnetic molecules in magnetic field gradients surrounding ferromagnetic microelectrodes. J Phys Chem B 105(37):8989–8994. doi:10.1021/jp012093s

    Article  CAS  Google Scholar 

  76. Tschulik K, Koza JA, Uhlemann M, Gebert A, Schultz L (2009) Effects of well-defined magnetic field gradients on the electrodeposition of copper and bismuth. Electrochem Commun 11(11):2241–2244

    Article  CAS  Google Scholar 

  77. Bund A, Koehler S, Kuehnlein HH, Plieth W (2003) Magnetic field effects in electrochemical reactions. Electrochim Acta 49(1):147–152

    Article  CAS  Google Scholar 

  78. Devos O, Olivier A, Chopart J, Aaboubi O, Maurin G (1998) Magnetic field effects on nickel electrodeposition. J Electrochem Soc 145(2):401–405

    Article  CAS  Google Scholar 

  79. Hinds G, Spada FE, Coey JMD, Mhochin TRN, Lyons MEG (2001) Magnetic field effects on copper electrolysis. J Phys Chem B 105:9487–9502

    Article  CAS  Google Scholar 

  80. Matsushima H, Nohira T, Ito Y (2004) AFM observation for iron thin films electrodeposited in magnetic fields. Electrochem Solid-State Lett 7:C81–C83

    Article  CAS  Google Scholar 

  81. Ispas A, Matsushima H, Plieth W, Bund A (2007) Influence of a magnetic field on the electrodeposition of nickel-iron alloys. Electrochim Acta 52(8):2785–2795

    Article  CAS  Google Scholar 

  82. Matsushima H, Nohira T, Mogi I, Ito Y (2004) Effects of magnetic fields on iron electrodeposition. Surf Coat Technol 179(2–3):245–251

    Article  CAS  Google Scholar 

  83. Weinmann M, Jung A, Natter H (2013) Magnetic field-assisted electroforming of complex geometries. J Solid State Electrochem 17(10):2721–2729. doi:10.1007/s10008-013-2172-6

    Article  CAS  Google Scholar 

  84. Ganesh V, Vijayaraghavan D, Lakshminarayanan V (2005) Fine grain growth of nickel electrodeposit: effect of applied magnetic field during deposition. Appl Surf Sci 240(14):286–295

    Article  CAS  Google Scholar 

  85. Hall EO (1951) The deformation and ageing of mild steel: III. Discussion of results. Proc Phys Soc Sect B 64(9):747

    Article  Google Scholar 

  86. Petch NJ (1953) The cleavage strength of polycrystals. J Iron Steel Inst 174:25–28

    CAS  Google Scholar 

  87. Rösler J, Harders H, Bäker M (2006) Mechanisches Verhalten der Werkstoffe, 2. durchgesehene und erweiterte Auflage. Teubner, Wiesbaden

    Google Scholar 

  88. Weißbach W (2010) Werkstoffkunde – Strukturen, Eigenschaften, Prüfung, 17. überarbeitete und aktualisierte Auflage. Vieweg-Teubner-Verlag, Wiesbaden

    Google Scholar 

  89. Boonyongmaneerat Y, Schuh C, Dunand D (2008) Mechanical properties of reticulated aluminum foams with electrodeposited Ni-W coatings. Scr Mater 59(3):336–339. doi:10.1016/j.scriptamat.2008.03.035

    Article  CAS  Google Scholar 

  90. Bouwhuis B, McCrea J, Palumbo G, Hibbard G (2009) Mechanical properties of hybrid nanocrystalline metal foams. Acta Mater 57(14):4046–4053

    Article  CAS  Google Scholar 

  91. Jung A, Koblischka MR, Lach E, Diebels S, Natter H (2012) Hybrid metal foams: mechanical testing and determination of mass flow limitations during electroplating. Int J Mater Sci 2(4):97–107

    Google Scholar 

  92. Jung A, Natter H, Hempelmann R, Diebels S, Koblischka MR, Hartmann U, Lach E (2010) Electrodeposition of nanocrystalline metals on open cell metal foams: improved mechanical properties. ECS Trans 25(41):165–172

    Article  CAS  Google Scholar 

  93. Jung A, Natter H, Diebels S, Lach E, Hempelmann R (2011) Nanonickel coated aluminum foam for enhanced impact energy absorption. Adv Eng Mater 13(1–2):2328. doi:10.1002/adem.201000190

    Google Scholar 

Download references

Acknowledgments

Financial support from the Bayerische Forschungsstiftung in the framework of the project “Galvano 21” and the Wirtschafts- und Wissenschaftsministerium des Saarlandes is gratefully acknowledged. We thank Prof. Dr. R. Hempelmann and Dr. M. R. Koblischka for stimulating discussions and Dipl.-Ing. M. Prell, Dipl.-Ing. S. Kuhn, and D. Münch for their experimental help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Jung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

Jung, A., Weinmann, M., Natter, H. (2015). Electroforming and Electrodeposition on Complex 3D Geometries: Special Requirements and New Methods. In: Aliofkhazraei, M., Makhlouf, A. (eds) Handbook of Nanoelectrochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-15207-3_46-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15207-3_46-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-15207-3

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics