Skip to main content
Erschienen in: Acta Mechanica 7/2020

19.05.2020 | Original Paper

Reflection of plane waves in a nonlocal micropolar thermoelastic medium under the effect of rotation

verfasst von: Kapil Kumar Kalkal, Devender Sheoran, Sunita Deswal

Erschienen in: Acta Mechanica | Ausgabe 7/2020

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The present investigation is concerned with the reflection of plane waves at the free surface of a homogeneous, isotropic, nonlocal, micropolar rotating thermoelastic medium. The entire thermoelastic medium is rotating with a uniform angular velocity. It is observed that there exist four coupled plane waves, which travel through the medium with distinct speeds. Using appropriate boundary conditions, the reflection coefficients and energy ratios of various reflected waves are computed numerically with the help of the software MATLAB. The numerical values of modulus of reflection coefficients are presented graphically to show the effects of nonlocal, rotation and micropolar parameters. It has been verified that during reflection phenomena, the sum of modulus of energy ratios is approximately equal to unity at each angle of incidence. The effect of micropolarity on the phase velocities is also observed and shown graphically.
Literatur
1.
5.
6.
Zurück zum Zitat Eringen, A.C.: Nonlocal continuum theory of liquid crystals. Mol. Cryst. Liq. Cryst. 75, 321–343 (1981)CrossRef Eringen, A.C.: Nonlocal continuum theory of liquid crystals. Mol. Cryst. Liq. Cryst. 75, 321–343 (1981)CrossRef
7.
Zurück zum Zitat Eringen, A.C.: Nonlocal Continuum Field Theories. Springer, New York (2002)MATH Eringen, A.C.: Nonlocal Continuum Field Theories. Springer, New York (2002)MATH
8.
Zurück zum Zitat Chakraborty, A.: Wave propagation in anisotropic media with non-local elasticity. Int. J. Solid. Struct. 44, 5723–5741 (2007)MATHCrossRef Chakraborty, A.: Wave propagation in anisotropic media with non-local elasticity. Int. J. Solid. Struct. 44, 5723–5741 (2007)MATHCrossRef
9.
Zurück zum Zitat Zenkour, A.M.: Nonlocal thermoelasticity theory without energy dissipation for nano-machined beam resonators subjected to various boundary conditions. Microsyst. Technol. 23, 55–65 (2017)CrossRef Zenkour, A.M.: Nonlocal thermoelasticity theory without energy dissipation for nano-machined beam resonators subjected to various boundary conditions. Microsyst. Technol. 23, 55–65 (2017)CrossRef
10.
Zurück zum Zitat Bachher, M., Sarkar, N.: Nonlocal theory of thermoelastic materials with voids and fractional derivate heat transfer. Waves Rand. Compl. Media 29, 595–613 (2019)CrossRef Bachher, M., Sarkar, N.: Nonlocal theory of thermoelastic materials with voids and fractional derivate heat transfer. Waves Rand. Compl. Media 29, 595–613 (2019)CrossRef
11.
Zurück zum Zitat Mondal, S., Sarkar, N., Sarkar, N.: Waves in dual-phase-lag thermoelastic materials with voids based on Eringen’s nonlocal elasticity. J. Therm. Stress. 42, 1035–1050 (2019)CrossRef Mondal, S., Sarkar, N., Sarkar, N.: Waves in dual-phase-lag thermoelastic materials with voids based on Eringen’s nonlocal elasticity. J. Therm. Stress. 42, 1035–1050 (2019)CrossRef
14.
15.
Zurück zum Zitat Nowacki, W.: Couple stresses in the theory of thermoelasticity I. Bull. Acad. Polon. Sci. Ser. Sci. Technol. 14, 129–138 (1966)MATH Nowacki, W.: Couple stresses in the theory of thermoelasticity I. Bull. Acad. Polon. Sci. Ser. Sci. Technol. 14, 129–138 (1966)MATH
16.
Zurück zum Zitat Nowacki, W.: Couple stresses in the theory of thermoelasticity II. Bull. Acad. Polon. Sci. Ser. Sci. Technol. 14, 263–272 (1966)MATH Nowacki, W.: Couple stresses in the theory of thermoelasticity II. Bull. Acad. Polon. Sci. Ser. Sci. Technol. 14, 263–272 (1966)MATH
17.
Zurück zum Zitat Nowacki, W.: Couple stresses in the theory of thermoelasticity III. Bull. Acad. Polon. Sci. Ser. Sci. Technol. 14, 801–809 (1966) Nowacki, W.: Couple stresses in the theory of thermoelasticity III. Bull. Acad. Polon. Sci. Ser. Sci. Technol. 14, 801–809 (1966)
18.
Zurück zum Zitat Eringen, A.C.: Foundation of Micropolar Thermoelasticity. Courses and Lectures, CISM, Udine, vol. 23. Springer, Wien (1970)MATHCrossRef Eringen, A.C.: Foundation of Micropolar Thermoelasticity. Courses and Lectures, CISM, Udine, vol. 23. Springer, Wien (1970)MATHCrossRef
19.
Zurück zum Zitat Tauchert, T.R., Claus Jr., W.D., Ariman, T.: The linear theory of micropolar thermoelasticity. Int. J. Eng. Sci. 6, 37–47 (1968)MATHCrossRef Tauchert, T.R., Claus Jr., W.D., Ariman, T.: The linear theory of micropolar thermoelasticity. Int. J. Eng. Sci. 6, 37–47 (1968)MATHCrossRef
20.
Zurück zum Zitat Eringen, A.C.: Plane waves in non-local micropolar elasticity. Int. J. Eng. Sci. 22, 1113–1121 (1984)MATHCrossRef Eringen, A.C.: Plane waves in non-local micropolar elasticity. Int. J. Eng. Sci. 22, 1113–1121 (1984)MATHCrossRef
21.
Zurück zum Zitat Dhaliwal, R.S., Singh, A.: Micropolar Thermoelasticity. In: Hetnarski, R. (ed.) Thermal Stress II, Mechanical and Mathematical Methods, Series 2. North Holland, Amsterdam (1987) Dhaliwal, R.S., Singh, A.: Micropolar Thermoelasticity. In: Hetnarski, R. (ed.) Thermal Stress II, Mechanical and Mathematical Methods, Series 2. North Holland, Amsterdam (1987)
22.
Zurück zum Zitat Ciarletta, M.: A theory of micropolar thermoelasticity without energy dissipation. J. Therm. Stress. 22, 581–594 (1999)MathSciNetCrossRef Ciarletta, M.: A theory of micropolar thermoelasticity without energy dissipation. J. Therm. Stress. 22, 581–594 (1999)MathSciNetCrossRef
23.
Zurück zum Zitat Sherief, H.H., Hamza, F.A., El-Sayed, A.M.: Theory of generalized micropolar thermoelasticity and an axisymmetric half-space problem. J. Therm. Stress. 28, 409–437 (2005)MathSciNetCrossRef Sherief, H.H., Hamza, F.A., El-Sayed, A.M.: Theory of generalized micropolar thermoelasticity and an axisymmetric half-space problem. J. Therm. Stress. 28, 409–437 (2005)MathSciNetCrossRef
24.
Zurück zum Zitat Ezzat, M.A., Awad, E.S.: Constitutive relations, uniqueness of solution and thermal shock application in the linear theory of micropolar generalized thermoelasticity involving two temperatures. J. Therm. Stress. 33, 226–250 (2010)CrossRef Ezzat, M.A., Awad, E.S.: Constitutive relations, uniqueness of solution and thermal shock application in the linear theory of micropolar generalized thermoelasticity involving two temperatures. J. Therm. Stress. 33, 226–250 (2010)CrossRef
25.
Zurück zum Zitat El-Karamany, A.S., Ezzat, M.A.: On the three-phase-lag linear micropolar thermoelasticity theory. Eur. J. Mech. A/Solids 40, 198–208 (2013)MathSciNetCrossRef El-Karamany, A.S., Ezzat, M.A.: On the three-phase-lag linear micropolar thermoelasticity theory. Eur. J. Mech. A/Solids 40, 198–208 (2013)MathSciNetCrossRef
26.
Zurück zum Zitat Khurana, A., Tomar, S.K.: Reflection of plane longitudinal waves from the stress-free boundary of a nonlocal micropolar solid half-space. J. Mech. Mater. Struct. 8, 95–107 (2013)CrossRef Khurana, A., Tomar, S.K.: Reflection of plane longitudinal waves from the stress-free boundary of a nonlocal micropolar solid half-space. J. Mech. Mater. Struct. 8, 95–107 (2013)CrossRef
27.
Zurück zum Zitat Zhang, P., Wei, P., Tang, Q.: Reflection of micropolar elastic waves at the non-free surface of a micropolar elastic half-space. Acta Mech. 226, 2925–2937 (2015)MathSciNetMATHCrossRef Zhang, P., Wei, P., Tang, Q.: Reflection of micropolar elastic waves at the non-free surface of a micropolar elastic half-space. Acta Mech. 226, 2925–2937 (2015)MathSciNetMATHCrossRef
28.
Zurück zum Zitat Khurana, A., Tomar, S.K.: Rayleigh-type waves in nonlocal micropolar elastic solid half-space. Ultrasonics 73, 162–168 (2017)CrossRef Khurana, A., Tomar, S.K.: Rayleigh-type waves in nonlocal micropolar elastic solid half-space. Ultrasonics 73, 162–168 (2017)CrossRef
29.
Zurück zum Zitat Deswal, S., Punia, B.S., Kalkal, K.K.: Thermodynamical interactions in a two-temperature dual-phase-lag micropolar thermoelasticity with gravity. Multidiscip. Model. Mater. Struct. 14, 102–124 (2018)CrossRef Deswal, S., Punia, B.S., Kalkal, K.K.: Thermodynamical interactions in a two-temperature dual-phase-lag micropolar thermoelasticity with gravity. Multidiscip. Model. Mater. Struct. 14, 102–124 (2018)CrossRef
30.
Zurück zum Zitat Khurana, A., Tomar, S.K.: Waves at interface of dissimilar nonlocal micropolar elastic half-spaces. Mech. Adv. Mater. Struct. 26, 825–833 (2019)CrossRef Khurana, A., Tomar, S.K.: Waves at interface of dissimilar nonlocal micropolar elastic half-spaces. Mech. Adv. Mater. Struct. 26, 825–833 (2019)CrossRef
31.
Zurück zum Zitat Schoenberg, M., Censor, D.: Elastic waves in rotating media. Q. Appl. Math. 31, 115–125 (1973)MATHCrossRef Schoenberg, M., Censor, D.: Elastic waves in rotating media. Q. Appl. Math. 31, 115–125 (1973)MATHCrossRef
32.
Zurück zum Zitat Chaudhuri, S.K.R., Debnath, L.: Magneto-thermo-elastic plane waves in rotating media. Int. J. Eng. Sci. 21, 155–163 (1983)MATHCrossRef Chaudhuri, S.K.R., Debnath, L.: Magneto-thermo-elastic plane waves in rotating media. Int. J. Eng. Sci. 21, 155–163 (1983)MATHCrossRef
33.
Zurück zum Zitat Othman, M.I.A.: Effect of rotation and relaxation time on a thermal shock problem for a half-space in generalized thermo-viscoelasticity. Acta Mech. 174, 129–143 (2005)MATHCrossRef Othman, M.I.A.: Effect of rotation and relaxation time on a thermal shock problem for a half-space in generalized thermo-viscoelasticity. Acta Mech. 174, 129–143 (2005)MATHCrossRef
34.
Zurück zum Zitat Othman, M.I.A., Singh, B.: The effect of rotation on generalized micropolar thermoelasticity for a half-space under five theories. Int. J. Solids Struct. 44, 2748–2762 (2007)MATHCrossRef Othman, M.I.A., Singh, B.: The effect of rotation on generalized micropolar thermoelasticity for a half-space under five theories. Int. J. Solids Struct. 44, 2748–2762 (2007)MATHCrossRef
35.
Zurück zum Zitat Roy, I., Acharya, D.P., Acharya, S.: Rayleigh wave in a rotating nonlocal magnetoelastic half-plane. J. Theor. Appl. Mech. 45, 61–78 (2015)MathSciNetMATHCrossRef Roy, I., Acharya, D.P., Acharya, S.: Rayleigh wave in a rotating nonlocal magnetoelastic half-plane. J. Theor. Appl. Mech. 45, 61–78 (2015)MathSciNetMATHCrossRef
36.
Zurück zum Zitat Yadav, R., Deswal, S., Kalkal, K.K.: Propagation of waves in an initially stressed generalized electromicrostretch thermoelastic medium with temperature-dependent properties under the effect of rotation. J. Therm. Stress. 40, 281–301 (2017)CrossRef Yadav, R., Deswal, S., Kalkal, K.K.: Propagation of waves in an initially stressed generalized electromicrostretch thermoelastic medium with temperature-dependent properties under the effect of rotation. J. Therm. Stress. 40, 281–301 (2017)CrossRef
37.
Zurück zum Zitat Kalkal, K.K., Sheokand, S.K., Deswal, S.: Rotation and phase-lag effects in a micropolar thermo-viscoelastic half-space. Iran. J. Sci. Technol. Trans. Mech. Eng. 43, 427–441 (2019)CrossRef Kalkal, K.K., Sheokand, S.K., Deswal, S.: Rotation and phase-lag effects in a micropolar thermo-viscoelastic half-space. Iran. J. Sci. Technol. Trans. Mech. Eng. 43, 427–441 (2019)CrossRef
38.
Zurück zum Zitat Deswal, S., Punia, B.S., Kalkal, K.K.: Propagation of waves at an interface between a transversely isotropic rotating thermoelastic solid half space and a fiber-reinforced magneto-thermoelastic rotating solid half space. Acta Mech. 230, 2669–2686 (2019)MathSciNetMATHCrossRef Deswal, S., Punia, B.S., Kalkal, K.K.: Propagation of waves at an interface between a transversely isotropic rotating thermoelastic solid half space and a fiber-reinforced magneto-thermoelastic rotating solid half space. Acta Mech. 230, 2669–2686 (2019)MathSciNetMATHCrossRef
39.
Zurück zum Zitat Challamel, N., Grazide, C., Picandet, V., Perrot, A., Zhang, Y.: A nonlocal Fourier’s law and its application to the heat conduction of one-dimensional and two-dimensional thermal lattices. C. R Mec. 344, 388–401 (2016)CrossRef Challamel, N., Grazide, C., Picandet, V., Perrot, A., Zhang, Y.: A nonlocal Fourier’s law and its application to the heat conduction of one-dimensional and two-dimensional thermal lattices. C. R Mec. 344, 388–401 (2016)CrossRef
40.
Zurück zum Zitat Eringen, A.C.: Theory of nonlocal thermoelasticity. Int. J. Eng. Sci. 12, 1063–1077 (1974)MATHCrossRef Eringen, A.C.: Theory of nonlocal thermoelasticity. Int. J. Eng. Sci. 12, 1063–1077 (1974)MATHCrossRef
41.
Zurück zum Zitat Achenbach, J.D.: Wave Propagation in Elastic Solids. North Holland, Amsterdam (1973)MATH Achenbach, J.D.: Wave Propagation in Elastic Solids. North Holland, Amsterdam (1973)MATH
42.
Zurück zum Zitat Singh, B., Yadav, A.K., Kaushal, S.: Reflection of plane wave in a micropolar thermoelastic solid half-space with diffusion. J. Therm. Stress. 39, 1378–1388 (2016)CrossRef Singh, B., Yadav, A.K., Kaushal, S.: Reflection of plane wave in a micropolar thermoelastic solid half-space with diffusion. J. Therm. Stress. 39, 1378–1388 (2016)CrossRef
43.
Zurück zum Zitat Tomar, S.K., Singh, J.: Plane waves in micropolar porous elastic solid. Int. J. Appl. Math. Mech. 2, 52–70 (2006) Tomar, S.K., Singh, J.: Plane waves in micropolar porous elastic solid. Int. J. Appl. Math. Mech. 2, 52–70 (2006)
44.
Zurück zum Zitat Deswal, S., Kalkal, K.K.: Plane waves in a fractional order micropolar magneto-thermoelastic half-space. Wave Motion 51, 100–113 (2014)MathSciNetMATHCrossRef Deswal, S., Kalkal, K.K.: Plane waves in a fractional order micropolar magneto-thermoelastic half-space. Wave Motion 51, 100–113 (2014)MathSciNetMATHCrossRef
Metadaten
Titel
Reflection of plane waves in a nonlocal micropolar thermoelastic medium under the effect of rotation
verfasst von
Kapil Kumar Kalkal
Devender Sheoran
Sunita Deswal
Publikationsdatum
19.05.2020
Verlag
Springer Vienna
Erschienen in
Acta Mechanica / Ausgabe 7/2020
Print ISSN: 0001-5970
Elektronische ISSN: 1619-6937
DOI
https://doi.org/10.1007/s00707-020-02676-w

Weitere Artikel der Ausgabe 7/2020

Acta Mechanica 7/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.