Skip to main content

2015 | OriginalPaper | Buchkapitel

18. Refrigeration System Optimization for Drinking Water Production Through Atmospheric Air Dehumidification

verfasst von : Marco Bortolini, Mauro Gamberi, Alessandro Graziani, Francesco Pilati

Erschienen in: Progress in Clean Energy, Volume 1

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Drinking water availability is one of the emerging challenges of the twenty-first century. Different technologies are investigated as possible sources of water for the arid regions. Atmospheric water vapor processing is a developing approach whose aim is to cool air to condensate the water present in the atmospheric moisture. Air dehumidification allows obtaining pure drinking water for geographical regions far from sea, rivers, and lakes.
This chapter presents the optimization of a refrigeration system for drinking water production through atmospheric air dehumidification. The system uses a fan to force the air through a heat exchanger, in which it is cooled. The water vapor condensates on the cooled heat exchanger surfaces and it is collected by gravity in a tank.
The system’s aim is to condensate the maximum water quantity achievable for every atmospheric air condition, represented by temperature, humidity, and pressure. Thus, a mathematical model is defined to determine the optimal atmospheric air flow that maximizes the condensed water production for every atmospheric air condition. Furthermore, to consider the atmospheric condition hourly profiles of the refrigeration system installation site, three air flow control strategies are proposed: hourly, monthly, and yearly. An experimental campaign is set up to validate the model. Experimental test results show that it accurately predicts the drinking water production (gap between −5.6 and +4.1 %). Finally, the case study of a refrigeration system installed in Dubai, United Arab Emirates, is presented to assess and compare the proposed three air flow control strategies.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat United Nations (2013) The millennium development goals report 2013. United Nations, New York United Nations (2013) The millennium development goals report 2013. United Nations, New York
2.
Zurück zum Zitat Anbarasu T, Pavithra S (2011) Vapour compression refrigeration system generating fresh water from humidity in the air. In Proceedings of sustainable energy and intelligent systems (SEISCON 2011), Tamil Nadu, India, 20–22 July 2011 Anbarasu T, Pavithra S (2011) Vapour compression refrigeration system generating fresh water from humidity in the air. In Proceedings of sustainable energy and intelligent systems (SEISCON 2011), Tamil Nadu, India, 20–22 July 2011
3.
Zurück zum Zitat Miller JE (2003) Review of water resources and desalination technologies. Sandia National Laboratories—Unlimited Release, Albuquerque Miller JE (2003) Review of water resources and desalination technologies. Sandia National Laboratories—Unlimited Release, Albuquerque
4.
Zurück zum Zitat Shanmugam G, Jawahar GS, Ravindran S (2004) Review on the uses of appropriate techniques for arid environment. In Proceedings of international conference on water resources and arid environment, Riyadh, Saudi Arabia, 5–8 Dec 2004 Shanmugam G, Jawahar GS, Ravindran S (2004) Review on the uses of appropriate techniques for arid environment. In Proceedings of international conference on water resources and arid environment, Riyadh, Saudi Arabia, 5–8 Dec 2004
5.
Zurück zum Zitat Helmreich B, Horn H (2009) Opportunities in rainwater harvesting. Desalination 248:118–124CrossRef Helmreich B, Horn H (2009) Opportunities in rainwater harvesting. Desalination 248:118–124CrossRef
6.
Zurück zum Zitat Ghaffour N, Missimer TM, Amy GL (2013) Technical review and evaluation of the economics of water desalination: current and future challenges for better water supply sustainability. Desalination 309:197–207CrossRef Ghaffour N, Missimer TM, Amy GL (2013) Technical review and evaluation of the economics of water desalination: current and future challenges for better water supply sustainability. Desalination 309:197–207CrossRef
7.
Zurück zum Zitat Narayan GP, Sharqawy MH, Summers EK, Lienhard JH, Zubair SM, Antar MA (2010) The potential of solar-driven humidification–dehumidification desalination for small-scale decentralized water production. Renew Sustain Energy Rev 14:1187–1201CrossRef Narayan GP, Sharqawy MH, Summers EK, Lienhard JH, Zubair SM, Antar MA (2010) The potential of solar-driven humidification–dehumidification desalination for small-scale decentralized water production. Renew Sustain Energy Rev 14:1187–1201CrossRef
8.
Zurück zum Zitat Wahlgren RV (2001) Atmospheric water vapour processor designs for potable water production: a review. Water Res 35:1–22CrossRef Wahlgren RV (2001) Atmospheric water vapour processor designs for potable water production: a review. Water Res 35:1–22CrossRef
9.
Zurück zum Zitat Mezher T, Fath H, Abbas Z, Khaled A (2011) Techno-economic assessment and environmental impacts of desalination technologies. Desalination 266:263–273CrossRef Mezher T, Fath H, Abbas Z, Khaled A (2011) Techno-economic assessment and environmental impacts of desalination technologies. Desalination 266:263–273CrossRef
10.
Zurück zum Zitat Gleick PH (2000) A look at twenty-first century water resources development. Water Int 25:127–138CrossRef Gleick PH (2000) A look at twenty-first century water resources development. Water Int 25:127–138CrossRef
11.
Zurück zum Zitat Gleick PH (1996) Water resources. In: Schneider SH (ed) Encyclopedia of climate and weather. Oxford University Press, New York Gleick PH (1996) Water resources. In: Schneider SH (ed) Encyclopedia of climate and weather. Oxford University Press, New York
12.
Zurück zum Zitat Gad HE, Hamed AM, El-Sharkawy II (2001) Application of a solar desiccant/collector system for water recovery from atmospheric air. Renew Energy 22:541–556CrossRef Gad HE, Hamed AM, El-Sharkawy II (2001) Application of a solar desiccant/collector system for water recovery from atmospheric air. Renew Energy 22:541–556CrossRef
13.
Zurück zum Zitat Ji JG, Wang RZ, Li LX (2007) New composite adsorbent for solar-driven fresh water production from the atmosphere. Desalination 212:176–182CrossRef Ji JG, Wang RZ, Li LX (2007) New composite adsorbent for solar-driven fresh water production from the atmosphere. Desalination 212:176–182CrossRef
14.
Zurück zum Zitat Abualhamayel HI, Gandhidasan P (1997) A method of obtaining fresh water from the humid atmosphere. Desalination 113:51–63CrossRef Abualhamayel HI, Gandhidasan P (1997) A method of obtaining fresh water from the humid atmosphere. Desalination 113:51–63CrossRef
15.
Zurück zum Zitat Starr VP (1972) Controlled atmospheric convection in an engineered structure. Nord Hydrol 3:1–21 Starr VP (1972) Controlled atmospheric convection in an engineered structure. Nord Hydrol 3:1–21
16.
Zurück zum Zitat Milani D, Abbas A, Vassallo A, Chiesa M, Bakri DA (2011) Evaluation of using thermoelectric coolers in a dehumidification system to generate freshwater from ambient air. Chem Eng Sci 66:2491–2501CrossRef Milani D, Abbas A, Vassallo A, Chiesa M, Bakri DA (2011) Evaluation of using thermoelectric coolers in a dehumidification system to generate freshwater from ambient air. Chem Eng Sci 66:2491–2501CrossRef
17.
Zurück zum Zitat Scrivani A, Bardi U (2008) A study of the use of solar concentrating plants for the atmospheric water vapour extraction from ambient air in the Middle East and Northern Africa region. Desalination 220:592–599CrossRef Scrivani A, Bardi U (2008) A study of the use of solar concentrating plants for the atmospheric water vapour extraction from ambient air in the Middle East and Northern Africa region. Desalination 220:592–599CrossRef
18.
Zurück zum Zitat Carrington CG, Liu Q (1995) Calorimeter measurements of a heat pump dehumidifier: influence of evaporator air flow. Int J Energy Res 19:649–658CrossRef Carrington CG, Liu Q (1995) Calorimeter measurements of a heat pump dehumidifier: influence of evaporator air flow. Int J Energy Res 19:649–658CrossRef
19.
Zurück zum Zitat Khalil A (1993) Dehumidification of atmospheric air as a potential source of fresh water in the UAE. Desalination 93:587–596CrossRef Khalil A (1993) Dehumidification of atmospheric air as a potential source of fresh water in the UAE. Desalination 93:587–596CrossRef
20.
Zurück zum Zitat Jradi M, Ghaddar N, Ghali K (2012) Experimental and theoretical study of an integrated thermoelectric–photovoltaic system for air dehumidification and fresh water production. Int J Energy Res 36:963–974CrossRef Jradi M, Ghaddar N, Ghali K (2012) Experimental and theoretical study of an integrated thermoelectric–photovoltaic system for air dehumidification and fresh water production. Int J Energy Res 36:963–974CrossRef
21.
Zurück zum Zitat Habeebullah BA (2009) Potential use of evaporator coils for water extraction in hot and humid areas. Desalination 237:330–345CrossRef Habeebullah BA (2009) Potential use of evaporator coils for water extraction in hot and humid areas. Desalination 237:330–345CrossRef
22.
Zurück zum Zitat Buck AL (1981) New equations for computing vapor pressure and enhancement factor. J Appl Meteorol 20:1527–1532CrossRef Buck AL (1981) New equations for computing vapor pressure and enhancement factor. J Appl Meteorol 20:1527–1532CrossRef
Metadaten
Titel
Refrigeration System Optimization for Drinking Water Production Through Atmospheric Air Dehumidification
verfasst von
Marco Bortolini
Mauro Gamberi
Alessandro Graziani
Francesco Pilati
Copyright-Jahr
2015
DOI
https://doi.org/10.1007/978-3-319-16709-1_18