Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

01.06.2015 | Original Article | Ausgabe 6/2015

International Journal of Computer Assisted Radiology and Surgery 6/2015

Registration of 3D shapes under anisotropic scaling

Anisotropic-scaled iterative closest point algorithm

Zeitschrift:
International Journal of Computer Assisted Radiology and Surgery > Ausgabe 6/2015
Autoren:
Elvis C. S. Chen, A. Jonathan McLeod, John S. H. Baxter, Terry M. Peters

Abstract

Purpose

Several medical imaging modalities exhibit inherent scaling among the acquired data: The scale in an ultrasound image varies with the speed of sound and the scale of the range data used to reconstruct organ surfaces is subject to the scanner distance. In the context of surface-based registration, these scaling factors are often assumed to be isotropic, or as a known prior. Accounting for such anisotropies in scale can potentially dramatically improve registration and calibrations procedures that are essential for robust image-guided interventions.

Methods

We introduce an extension to the ordinary iterative closest point (ICP) algorithm, solving for the similarity transformation between point-sets comprising anisotropic scaling followed by rotation and translation. The proposed anisotropic-scaled ICP (ASICP) incorporate a novel use of Mahalanobis distance to establish correspondence and a new solution for the underlying registration problem. The derivation and convergence properties of ASICP are presented, and practical implementation details are discussed. Because the ASICP algorithm is independent of shape representation and feature extraction, it is generalizable for registrations involving scaling.

Results

Experimental results involving the ultrasound calibration, registration of partially overlapping range data, whole surfaces, as well as multi-modality surface data (intraoperative ultrasound to preoperative MR) show dramatic improvement in fiducial registration error.

Conclusion

We present a generalization of the ICP algorithm, solving for a similarity transform between two point-sets by means of anisotropic scales, followed by rotation and translation. Our anisotropic-scaled ICP algorithm shares many traits with the ordinary ICP, including guaranteed convergence, independence of shape representation, and general applicability.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 6/2015

International Journal of Computer Assisted Radiology and Surgery 6/2015 Zur Ausgabe

Premium Partner

    Bildnachweise