Skip to main content

2019 | OriginalPaper | Buchkapitel

Regulation of DNA Topology by Topoisomerases: Mathematics at the Molecular Level

verfasst von : Rachel E. Ashley, Neil Osheroff

Erschienen in: Knots, Low-Dimensional Topology and Applications

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Although the genetic information is encoded in a one-dimensional array of nucleic acid bases, three-dimensional relationships within DNA play a major role in how this information is accessed and utilized by living organisms. Because of the intertwined nature of the DNA two-braid and its extreme length and compaction in the cell, some of the most important three-dimensional relationships in DNA are topological in nature. Topological linkages within the two-braid and between different DNA segments can be described in simple mathematical terms that account for both the twist and the writhe in the double helix. Topoisomerases are ubiquitous enzymes that regulate the topological state of the genetic material by altering either twist or writhe. To do so, these enzymes transiently open the topological system by breaking one or both strands of the two-braid. This article will review the mathematics of DNA topology, describe the different classes of topoisomerases, and discuss the mechanistic basis for their actions in both biological and mathematical terms. Finally, it will discuss how topoisomerases recognize the topological states of their DNA substrates and products and how some of these enzymes distinguish supercoil handedness during catalysis and DNA cleavage. These latter characteristics make topoisomerases well suited for their individual physiological tasks and impact their roles as targets of important anticancer and antibacterial drugs.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat J.D. Watson, F.H.C. Crick, Molecular structure of nucleic acids. Nature 171, 737–738 (1953)CrossRef J.D. Watson, F.H.C. Crick, Molecular structure of nucleic acids. Nature 171, 737–738 (1953)CrossRef
2.
Zurück zum Zitat International Human Genome Sequencing Consortium, Finishing the euchromatic sequence of the human genome. Nature 431, 931–945 (2004)CrossRef International Human Genome Sequencing Consortium, Finishing the euchromatic sequence of the human genome. Nature 431, 931–945 (2004)CrossRef
3.
Zurück zum Zitat B. Alberts, Molecular Biology of the Cell, 6th edn. (Garland Science, Taylor and Francis Group, New York, NY, 2015) B. Alberts, Molecular Biology of the Cell, 6th edn. (Garland Science, Taylor and Francis Group, New York, NY, 2015)
4.
Zurück zum Zitat E. Bianconi, A. Piovesan, F. Facchin, A. Beraudi, R. Casadei, F. Frabetti, L. Vitale, M.C. Pelleri, S. Tassani, F. Piva et al., An estimation of the number of cells in the human body. Ann. Hum. Biol. 40, 463–471 (2013)CrossRef E. Bianconi, A. Piovesan, F. Facchin, A. Beraudi, R. Casadei, F. Frabetti, L. Vitale, M.C. Pelleri, S. Tassani, F. Piva et al., An estimation of the number of cells in the human body. Ann. Hum. Biol. 40, 463–471 (2013)CrossRef
5.
Zurück zum Zitat R. Sender, S. Fuchs, R. Milo, Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 14, e1002533 (2016)CrossRef R. Sender, S. Fuchs, R. Milo, Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 14, e1002533 (2016)CrossRef
6.
Zurück zum Zitat J.C. Wang, Cellular roles of DNA topoisomerases: a molecular perspective. Nat. Rev. Mol. Cell Biol. 3, 430–440 (2002)CrossRef J.C. Wang, Cellular roles of DNA topoisomerases: a molecular perspective. Nat. Rev. Mol. Cell Biol. 3, 430–440 (2002)CrossRef
7.
Zurück zum Zitat O. Espeli, K.J. Marians, Untangling intracellular DNA topology. Mol. Microbiol. 52, 925–931 (2004)CrossRef O. Espeli, K.J. Marians, Untangling intracellular DNA topology. Mol. Microbiol. 52, 925–931 (2004)CrossRef
8.
Zurück zum Zitat A.D. Bates, A. Maxwell, DNA Topology (Oxford University Press, New York, USA, 2005) A.D. Bates, A. Maxwell, DNA Topology (Oxford University Press, New York, USA, 2005)
9.
Zurück zum Zitat J.E. Deweese, M.A. Osheroff, N. Osheroff, DNA topology and topoisomerases: teaching a “knotty” subject. Biochem. Mol. Biol. Educ. 37, 2–10 (2008)CrossRef J.E. Deweese, M.A. Osheroff, N. Osheroff, DNA topology and topoisomerases: teaching a “knotty” subject. Biochem. Mol. Biol. Educ. 37, 2–10 (2008)CrossRef
10.
Zurück zum Zitat C. Adams, A brief introduction to knot theory from the physical point of view, in Proceedings of Symposia in Applied Mathematics: Applications of Knot Theory, vol. 66, eds. by D. Buck, E. Flapan (American Mathematical Society, Providence, 2009), pp. 1–20 C. Adams, A brief introduction to knot theory from the physical point of view, in Proceedings of Symposia in Applied Mathematics: Applications of Knot Theory, vol. 66, eds. by D. Buck, E. Flapan (American Mathematical Society, Providence, 2009), pp. 1–20
11.
Zurück zum Zitat D. Buck DNA topology, in Proceedings of Symposia in Applied Mathematics: Applications of Knot Theory, vol. 66, eds. by D. Buck, E. Flapan (American Mathematical Society, Providence, 2009), pp. 47–80 D. Buck DNA topology, in Proceedings of Symposia in Applied Mathematics: Applications of Knot Theory, vol. 66, eds. by D. Buck, E. Flapan (American Mathematical Society, Providence, 2009), pp. 47–80
12.
Zurück zum Zitat Z. Liu, R.W. Deibler, H.S. Chan, L. Zechiedrich, The why and how of DNA unlinking. Nucleic Acids Res. 37, 661–671 (2009)CrossRef Z. Liu, R.W. Deibler, H.S. Chan, L. Zechiedrich, The why and how of DNA unlinking. Nucleic Acids Res. 37, 661–671 (2009)CrossRef
13.
Zurück zum Zitat S.H. Chen, N.L. Chan, T.S. Hsieh, New mechanistic and functional insights into DNA topoisomerases. Annu. Rev. Biochem. 82, 139–170 (2013)CrossRef S.H. Chen, N.L. Chan, T.S. Hsieh, New mechanistic and functional insights into DNA topoisomerases. Annu. Rev. Biochem. 82, 139–170 (2013)CrossRef
14.
Zurück zum Zitat Y. Pommier, Y. Sun, S.N. Huang, J.L. Nitiss, Roles of eukaryotic topoisomerases in transcription, replication and genomic stability. Nat. Rev. Mol. Cell Biol. 17, 703–721 (2016)CrossRef Y. Pommier, Y. Sun, S.N. Huang, J.L. Nitiss, Roles of eukaryotic topoisomerases in transcription, replication and genomic stability. Nat. Rev. Mol. Cell Biol. 17, 703–721 (2016)CrossRef
15.
Zurück zum Zitat Y. Seol, K.C. Neuman, The dynamic interplay between DNA topoisomerases and DNA topology. Biophys. Rev. 8, 101–111 (2016)CrossRef Y. Seol, K.C. Neuman, The dynamic interplay between DNA topoisomerases and DNA topology. Biophys. Rev. 8, 101–111 (2016)CrossRef
16.
Zurück zum Zitat L. Finzi, W.K. Olson, The emerging role of DNA supercoiling as a dynamic player in genomic structure and function. Biophys. Rev. 8, 1–3 (2016)CrossRef L. Finzi, W.K. Olson, The emerging role of DNA supercoiling as a dynamic player in genomic structure and function. Biophys. Rev. 8, 1–3 (2016)CrossRef
18.
Zurück zum Zitat W.R. Bauer, F.H. Crick, J.H. White, Supercoiled DNA. Sci. Am. 243, 100–113 (1980) W.R. Bauer, F.H. Crick, J.H. White, Supercoiled DNA. Sci. Am. 243, 100–113 (1980)
19.
Zurück zum Zitat J.H. White, N.R. Cozzarelli, A simple topological method for describing stereoisomers of DNA catenanes and knots. Proc. Natl. Acad. Sci. USA 81, 3322–3326 (1984)CrossRef J.H. White, N.R. Cozzarelli, A simple topological method for describing stereoisomers of DNA catenanes and knots. Proc. Natl. Acad. Sci. USA 81, 3322–3326 (1984)CrossRef
20.
Zurück zum Zitat A.V. Vologodskii, N.R. Cozzarelli, Conformational and thermodynamic properties of supercoiled DNA. Annu. Rev. Biophys. Biomol. Struct. 23, 609–643 (1994)CrossRef A.V. Vologodskii, N.R. Cozzarelli, Conformational and thermodynamic properties of supercoiled DNA. Annu. Rev. Biophys. Biomol. Struct. 23, 609–643 (1994)CrossRef
21.
Zurück zum Zitat M.R. Dennis, J.H. Hannay, Geometry of Calugareanu’s theorem. Proc. Roy. Soc. A 461, 3245–3254 (2005)MATHCrossRef M.R. Dennis, J.H. Hannay, Geometry of Calugareanu’s theorem. Proc. Roy. Soc. A 461, 3245–3254 (2005)MATHCrossRef
22.
Zurück zum Zitat A.C. Ketron, N. Osheroff, DNA topology and topoisomerases, in Molecular Life Sciences: An Encyclopedic Reference, ed. by E. Bell (Springer, New York, New York, NY, 2014), pp. 1–19 A.C. Ketron, N. Osheroff, DNA topology and topoisomerases, in Molecular Life Sciences: An Encyclopedic Reference, ed. by E. Bell (Springer, New York, New York, NY, 2014), pp. 1–19
23.
Zurück zum Zitat D. Shore, R.L. Baldwin, Energetics of DNA twisting. II. Topoisomer analysis. J. Mol. Biol. 170, 983–1007 (1983)CrossRef D. Shore, R.L. Baldwin, Energetics of DNA twisting. II. Topoisomer analysis. J. Mol. Biol. 170, 983–1007 (1983)CrossRef
24.
Zurück zum Zitat A. Falaschi, G. Abdurashidova, O. Sandoval, S. Radulescu, G. Biamonti, S. Riva, Molecular and structural transactions at human DNA replication origins. Cell Cycle 6, 1705–1712 (2007)CrossRef A. Falaschi, G. Abdurashidova, O. Sandoval, S. Radulescu, G. Biamonti, S. Riva, Molecular and structural transactions at human DNA replication origins. Cell Cycle 6, 1705–1712 (2007)CrossRef
25.
Zurück zum Zitat A. Travers, G. Muskhelishvili, A common topology for bacterial and eukaryotic transcription initiation? EMBO Rep. 8, 147–151 (2007)CrossRef A. Travers, G. Muskhelishvili, A common topology for bacterial and eukaryotic transcription initiation? EMBO Rep. 8, 147–151 (2007)CrossRef
26.
Zurück zum Zitat J.M. Fortune, N. Osheroff, Topoisomerase II as a target for anticancer drugs: when enzymes stop being nice. Prog. Nucleic Acid Res. Mol. Biol. 64, 221–253 (2000)CrossRef J.M. Fortune, N. Osheroff, Topoisomerase II as a target for anticancer drugs: when enzymes stop being nice. Prog. Nucleic Acid Res. Mol. Biol. 64, 221–253 (2000)CrossRef
27.
Zurück zum Zitat A.K. McClendon, N. Osheroff, DNA topoisomerase II, genotoxicity, and cancer. Mutat. Res. 623, 83–97 (2007)CrossRef A.K. McClendon, N. Osheroff, DNA topoisomerase II, genotoxicity, and cancer. Mutat. Res. 623, 83–97 (2007)CrossRef
28.
Zurück zum Zitat J.B. Leppard, J.J. Champoux, Human DNA topoisomerase I: relaxation, roles, and damage control. Chromosoma 114, 75–85 (2005)CrossRef J.B. Leppard, J.J. Champoux, Human DNA topoisomerase I: relaxation, roles, and damage control. Chromosoma 114, 75–85 (2005)CrossRef
29.
Zurück zum Zitat J.J. Champoux, DNA topoisomerases: structure, function, and mechanism. Annu. Rev. Biochem. 70, 369–413 (2001)CrossRef J.J. Champoux, DNA topoisomerases: structure, function, and mechanism. Annu. Rev. Biochem. 70, 369–413 (2001)CrossRef
30.
Zurück zum Zitat A.J. Schoeffler, J.M. Berger, Recent advances in understanding structure-function relationships in the type II topoisomerase mechanism. Biochem. Soc. Trans. 33, 1465–1470 (2005)CrossRef A.J. Schoeffler, J.M. Berger, Recent advances in understanding structure-function relationships in the type II topoisomerase mechanism. Biochem. Soc. Trans. 33, 1465–1470 (2005)CrossRef
31.
Zurück zum Zitat C. Levine, H. Hiasa, K.J. Marians, DNA gyrase and topoisomerase IV: biochemical activities, physiological roles during chromosome replication, and drug sensitivities. Biochim. Biophys. Acta 1400, 29–43 (1998)CrossRef C. Levine, H. Hiasa, K.J. Marians, DNA gyrase and topoisomerase IV: biochemical activities, physiological roles during chromosome replication, and drug sensitivities. Biochim. Biophys. Acta 1400, 29–43 (1998)CrossRef
32.
Zurück zum Zitat Y. Pommier, Topoisomerase I inhibitors: camptothecins and beyond. Nat. Rev. Cancer 6, 789–802 (2006)CrossRef Y. Pommier, Topoisomerase I inhibitors: camptothecins and beyond. Nat. Rev. Cancer 6, 789–802 (2006)CrossRef
33.
Zurück zum Zitat K.D. Corbett, J.M. Berger, Structure, molecular mechanisms, and evolutionary relationships in DNA topoisomerases. Annu. Rev. Biophys. Biomol. Struct. 33, 95–118 (2004)CrossRef K.D. Corbett, J.M. Berger, Structure, molecular mechanisms, and evolutionary relationships in DNA topoisomerases. Annu. Rev. Biophys. Biomol. Struct. 33, 95–118 (2004)CrossRef
34.
Zurück zum Zitat P. Forterre, S. Gribaldo, D. Gadelle, M.C. Serre, Origin and evolution of DNA topoisomerases. Biochimie 89, 427–446 (2007)CrossRef P. Forterre, S. Gribaldo, D. Gadelle, M.C. Serre, Origin and evolution of DNA topoisomerases. Biochimie 89, 427–446 (2007)CrossRef
35.
Zurück zum Zitat S.M. Vos, E.M. Tretter, B.H. Schmidt, J.M. Berger, All tangled up: how cells direct, manage and exploit topoisomerase function. Nat. Rev. Mol. Cell Biol. 12, 827–841 (2011)CrossRef S.M. Vos, E.M. Tretter, B.H. Schmidt, J.M. Berger, All tangled up: how cells direct, manage and exploit topoisomerase function. Nat. Rev. Mol. Cell Biol. 12, 827–841 (2011)CrossRef
36.
Zurück zum Zitat T. Viard, C.B. de la Tour, Type IA topoisomerases: a simple puzzle? Biochimie 89, 456–467 (2007)CrossRef T. Viard, C.B. de la Tour, Type IA topoisomerases: a simple puzzle? Biochimie 89, 456–467 (2007)CrossRef
37.
Zurück zum Zitat N.M. Baker, R. Rajan, A. Mondragon, Structural studies of type I topoisomerases. Nucleic Acids Res. 37, 693–701 (2009)CrossRef N.M. Baker, R. Rajan, A. Mondragon, Structural studies of type I topoisomerases. Nucleic Acids Res. 37, 693–701 (2009)CrossRef
38.
Zurück zum Zitat Y.C. Tse-Dinh, Bacterial and archeal type I topoisomerases. Biochim. Biophys. Acta 1400, 19–27 (1998)CrossRef Y.C. Tse-Dinh, Bacterial and archeal type I topoisomerases. Biochim. Biophys. Acta 1400, 19–27 (1998)CrossRef
39.
Zurück zum Zitat G. Stoll, O.P. Pietilainen, B. Linder, J. Suvisaari, C. Brosi, W. Hennah, V. Leppa, M. Torniainen, S. Ripatti, S. Ala-Mello et al., Deletion of TOP3β, a component of FMRP-containing mRNPs, contributes to neurodevelopmental disorders. Nat. Neurosci. 16, 1228–1237 (2013)CrossRef G. Stoll, O.P. Pietilainen, B. Linder, J. Suvisaari, C. Brosi, W. Hennah, V. Leppa, M. Torniainen, S. Ripatti, S. Ala-Mello et al., Deletion of TOP3β, a component of FMRP-containing mRNPs, contributes to neurodevelopmental disorders. Nat. Neurosci. 16, 1228–1237 (2013)CrossRef
40.
Zurück zum Zitat J.L. Nitiss, Investigating the biological functions of DNA topoisomerases in eukaryotic cells. Biochim. Biophys. Acta 1400, 63–81 (1998)CrossRef J.L. Nitiss, Investigating the biological functions of DNA topoisomerases in eukaryotic cells. Biochim. Biophys. Acta 1400, 63–81 (1998)CrossRef
41.
Zurück zum Zitat M.P. Lee, S.D. Brown, A. Chen, T.-S. Hsieh, DNA topoisomerase I is essential in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 90, 6656–6660 (1993)CrossRef M.P. Lee, S.D. Brown, A. Chen, T.-S. Hsieh, DNA topoisomerase I is essential in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 90, 6656–6660 (1993)CrossRef
42.
Zurück zum Zitat S.G. Morham, K.D. Kluckman, N. Voulomanos, O. Smithies, Targeted disruption of the mouse topoisomerase I gene by camptothecin selection. Mol. Cell. Biol. 16, 6804–6809 (1996)CrossRef S.G. Morham, K.D. Kluckman, N. Voulomanos, O. Smithies, Targeted disruption of the mouse topoisomerase I gene by camptothecin selection. Mol. Cell. Biol. 16, 6804–6809 (1996)CrossRef
43.
Zurück zum Zitat C.R. Lopez, S. Yang, R.W. Deibler, S.A. Ray, J.M. Pennington, R.J. Digate, P.J. Hastings, S.M. Rosenberg, E.L. Zechiedrich, A role for topoisomerase III in a recombination pathway alternative to RuvABC. Mol. Microbiol. 58, 80–101 (2005)CrossRef C.R. Lopez, S. Yang, R.W. Deibler, S.A. Ray, J.M. Pennington, R.J. Digate, P.J. Hastings, S.M. Rosenberg, E.L. Zechiedrich, A role for topoisomerase III in a recombination pathway alternative to RuvABC. Mol. Microbiol. 58, 80–101 (2005)CrossRef
44.
Zurück zum Zitat J.E. Deweese, N. Osheroff, The DNA cleavage reaction of topoisomerase II: wolf in sheep’s clothing. Nucleic Acids Res. 37, 738–749 (2009)CrossRef J.E. Deweese, N. Osheroff, The DNA cleavage reaction of topoisomerase II: wolf in sheep’s clothing. Nucleic Acids Res. 37, 738–749 (2009)CrossRef
45.
Zurück zum Zitat J.L. Nitiss, DNA topoisomerase II and its growing repertoire of biological functions. Nat. Rev. Cancer 9, 327–337 (2009)CrossRef J.L. Nitiss, DNA topoisomerase II and its growing repertoire of biological functions. Nat. Rev. Cancer 9, 327–337 (2009)CrossRef
46.
Zurück zum Zitat N.G. Bush, K. Evans-Roberts, A. Maxwell, DNA topoisomerases. EcoSal Plus, 6 (2015) N.G. Bush, K. Evans-Roberts, A. Maxwell, DNA topoisomerases. EcoSal Plus, 6 (2015)
47.
Zurück zum Zitat J.M. Berger, Structure of DNA topoisomerases. Biochim. Biophys. Acta 1400, 3–18 (1998)CrossRef J.M. Berger, Structure of DNA topoisomerases. Biochim. Biophys. Acta 1400, 3–18 (1998)CrossRef
48.
Zurück zum Zitat J.C. Wang, Moving one DNA double helix through another by a type II DNA topoisomerase: the story of a simple molecular machine. Q. Rev. Biophys. 31, 107–144 (1998)CrossRef J.C. Wang, Moving one DNA double helix through another by a type II DNA topoisomerase: the story of a simple molecular machine. Q. Rev. Biophys. 31, 107–144 (1998)CrossRef
49.
Zurück zum Zitat R. Velez-Cruz, N. Osheroff, DNA topoisomerases: type II, in Encyclopedia of Biological Chemistry, eds. by W.J. Lennarz, M.D. Lane (Elsevier, 2004), pp. 806–811 R. Velez-Cruz, N. Osheroff, DNA topoisomerases: type II, in Encyclopedia of Biological Chemistry, eds. by W.J. Lennarz, M.D. Lane (Elsevier, 2004), pp. 806–811
50.
Zurück zum Zitat F.H. Drake, J.P. Zimmerman, F.L. McCabe, H.F. Bartus, S.R. Per, D.M. Sullivan, W.E. Ross, M.R. Mattern, R.K. Johnson, S.T. Crooke, Purification of topoisomerase II from amsacrine-resistant P388 leukemia cells. Evidence for two forms of the enzyme. J. Biol. Chem. 262, 16739–16747 (1987) F.H. Drake, J.P. Zimmerman, F.L. McCabe, H.F. Bartus, S.R. Per, D.M. Sullivan, W.E. Ross, M.R. Mattern, R.K. Johnson, S.T. Crooke, Purification of topoisomerase II from amsacrine-resistant P388 leukemia cells. Evidence for two forms of the enzyme. J. Biol. Chem. 262, 16739–16747 (1987)
51.
Zurück zum Zitat F.H. Drake, G.A. Hofmann, H.F. Bartus, M.R. Mattern, S.T. Crooke, C.K. Mirabelli, Biochemical and pharmacological properties of p170 and p180 forms of topoisomerase II. Biochemistry 28, 8154–8160 (1989)CrossRef F.H. Drake, G.A. Hofmann, H.F. Bartus, M.R. Mattern, S.T. Crooke, C.K. Mirabelli, Biochemical and pharmacological properties of p170 and p180 forms of topoisomerase II. Biochemistry 28, 8154–8160 (1989)CrossRef
52.
Zurück zum Zitat M. Tsai-Pflugfelder, L.F. Liu, A.A. Liu, K.M. Tewey, J. Whang-Peng, T. Knutsen, K. Huebner, C.M. Croce, J.C. Wang, Cloning and sequencing of cDNA encoding human DNA topoisomerase II and localization of the gene to chromosome region 17q21-22. Proc. Natl. Acad. Sci. USA. 85, 7177–7181 (1988)CrossRef M. Tsai-Pflugfelder, L.F. Liu, A.A. Liu, K.M. Tewey, J. Whang-Peng, T. Knutsen, K. Huebner, C.M. Croce, J.C. Wang, Cloning and sequencing of cDNA encoding human DNA topoisomerase II and localization of the gene to chromosome region 17q21-22. Proc. Natl. Acad. Sci. USA. 85, 7177–7181 (1988)CrossRef
53.
Zurück zum Zitat J.R. Jenkins, P. Ayton, T. Jones, S.L. Davies, D.L. Simmons, A.L. Harris, D. Sheer, I.D. Hickson, Isolation of cDNA clones encoding the beta isozyme of human DNA topoisomerase II and localisation of the gene to chromosome 3p24. Nucleic Acids Res. 20, 5587–5592 (1992)CrossRef J.R. Jenkins, P. Ayton, T. Jones, S.L. Davies, D.L. Simmons, A.L. Harris, D. Sheer, I.D. Hickson, Isolation of cDNA clones encoding the beta isozyme of human DNA topoisomerase II and localisation of the gene to chromosome 3p24. Nucleic Acids Res. 20, 5587–5592 (1992)CrossRef
54.
Zurück zum Zitat C.A. Austin, K.L. Marsh, Eukaryotic DNA topoisomerase IIβ. BioEssays 20, 215–226 (1998)CrossRef C.A. Austin, K.L. Marsh, Eukaryotic DNA topoisomerase IIβ. BioEssays 20, 215–226 (1998)CrossRef
55.
Zurück zum Zitat K.B. Tan, T.E. Dorman, K.M. Falls, T.D. Chung, C.K. Mirabelli, S.T. Crooke, J. Mao, Topoisomerase IIα and topoisomerase IIβ genes: characterization and mapping to human chromosomes 17 and 3, respectively. Cancer Res. 52, 231–234 (1992) K.B. Tan, T.E. Dorman, K.M. Falls, T.D. Chung, C.K. Mirabelli, S.T. Crooke, J. Mao, Topoisomerase IIα and topoisomerase IIβ genes: characterization and mapping to human chromosomes 17 and 3, respectively. Cancer Res. 52, 231–234 (1992)
56.
Zurück zum Zitat A.M. Wilstermann, N. Osheroff, Stabilization of eukaryotic topoisomerase II-DNA cleavage complexes. Curr. Top. Med. Chem. 3, 1349–1364 (2003)CrossRef A.M. Wilstermann, N. Osheroff, Stabilization of eukaryotic topoisomerase II-DNA cleavage complexes. Curr. Top. Med. Chem. 3, 1349–1364 (2003)CrossRef
57.
Zurück zum Zitat M. Pendleton, R.H. Lindsey Jr., C.A. Felix, D. Grimwade, N. Osheroff, Topoisomerase II and leukemia. Ann. NY Acad. Sci. 1310, 98–110 (2014)CrossRef M. Pendleton, R.H. Lindsey Jr., C.A. Felix, D. Grimwade, N. Osheroff, Topoisomerase II and leukemia. Ann. NY Acad. Sci. 1310, 98–110 (2014)CrossRef
58.
Zurück zum Zitat A.C. Gentry, N. Osheroff, DNA topoisomerases: type II, in Encyclopedia of Biological Chemistry, 2nd edn., eds. by W.J. Lennarz, M.D. Lane (Academic Press, Waltham, 2013), pp. 163–168CrossRef A.C. Gentry, N. Osheroff, DNA topoisomerases: type II, in Encyclopedia of Biological Chemistry, 2nd edn., eds. by W.J. Lennarz, M.D. Lane (Academic Press, Waltham, 2013), pp. 163–168CrossRef
59.
Zurück zum Zitat M.M. Heck, W.N. Hittelman, W.C. Earnshaw, Differential expression of DNA topoisomerases I and II during the eukaryotic cell cycle. Proc. Natl. Acad. Sci. USA 85, 1086–1090 (1988)CrossRef M.M. Heck, W.N. Hittelman, W.C. Earnshaw, Differential expression of DNA topoisomerases I and II during the eukaryotic cell cycle. Proc. Natl. Acad. Sci. USA 85, 1086–1090 (1988)CrossRef
60.
Zurück zum Zitat R.D. Woessner, M.R. Mattern, C.K. Mirabelli, R.K. Johnson, F.H. Drake, Proliferation- and cell cycle-dependent differences in expression of the 170 kilodalton and 180 kilodalton forms of topoisomerase II in NIH-3T3 cells. Cell Growth Differ. 2, 209–214 (1991) R.D. Woessner, M.R. Mattern, C.K. Mirabelli, R.K. Johnson, F.H. Drake, Proliferation- and cell cycle-dependent differences in expression of the 170 kilodalton and 180 kilodalton forms of topoisomerase II in NIH-3T3 cells. Cell Growth Differ. 2, 209–214 (1991)
61.
Zurück zum Zitat K. Kimura, M. Saijo, M. Ui, T. Enomoto, Growth state- and cell cycle-dependent fluctuation in the expression of two forms of DNA topoisomerase II and possible specific modification of the higher molecular weight form in the M phase. J. Biol. Chem. 269, 1173–1176 (1994) K. Kimura, M. Saijo, M. Ui, T. Enomoto, Growth state- and cell cycle-dependent fluctuation in the expression of two forms of DNA topoisomerase II and possible specific modification of the higher molecular weight form in the M phase. J. Biol. Chem. 269, 1173–1176 (1994)
62.
Zurück zum Zitat P. Grue, A. Grasser, M. Sehested, P.B. Jensen, A. Uhse, T. Straub, W. Ness, F. Boege, Essential mitotic functions of DNA topoisomerase IIα are not adopted by topoisomerase IIβ in human H69 cells. J. Biol. Chem. 273, 33660–33666 (1998)CrossRef P. Grue, A. Grasser, M. Sehested, P.B. Jensen, A. Uhse, T. Straub, W. Ness, F. Boege, Essential mitotic functions of DNA topoisomerase IIα are not adopted by topoisomerase IIβ in human H69 cells. J. Biol. Chem. 273, 33660–33666 (1998)CrossRef
63.
Zurück zum Zitat M.O. Christensen, M.K. Larsen, H.U. Barthelmes, R. Hock, C.L. Andersen, E. Kjeldsen, B.R. Knudsen, O. Westergaard, F. Boege, C. Mielke, Dynamics of human DNA topoisomerases IIα and IIβ in living cells. J. Cell Biol. 157, 31–44 (2002)CrossRef M.O. Christensen, M.K. Larsen, H.U. Barthelmes, R. Hock, C.L. Andersen, E. Kjeldsen, B.R. Knudsen, O. Westergaard, F. Boege, C. Mielke, Dynamics of human DNA topoisomerases IIα and IIβ in living cells. J. Cell Biol. 157, 31–44 (2002)CrossRef
64.
Zurück zum Zitat B.G. Ju, V.V. Lunyak, V. Perissi, I. Garcia-Bassets, D.W. Rose, C.K. Glass, M.G. Rosenfeld, A topoisomerase IIβ-mediated dsDNA break required for regulated transcription. Science 312, 1798–1802 (2006)CrossRef B.G. Ju, V.V. Lunyak, V. Perissi, I. Garcia-Bassets, D.W. Rose, C.K. Glass, M.G. Rosenfeld, A topoisomerase IIβ-mediated dsDNA break required for regulated transcription. Science 312, 1798–1802 (2006)CrossRef
65.
Zurück zum Zitat I.G. Cowell, Z. Sondka, K. Smith, K.C. Lee, C.M. Manville, M. Sidorczuk-Lesthuruge, H.A. Rance, K. Padget, G.H. Jackson, N. Adachi et al., Model for MLL translocations in therapy-related leukemia involving topoisomerase IIβ-mediated DNA strand breaks and gene proximity. Proc. Natl. Acad. Sci. USA 109, 8989–8994 (2012)CrossRef I.G. Cowell, Z. Sondka, K. Smith, K.C. Lee, C.M. Manville, M. Sidorczuk-Lesthuruge, H.A. Rance, K. Padget, G.H. Jackson, N. Adachi et al., Model for MLL translocations in therapy-related leukemia involving topoisomerase IIβ-mediated DNA strand breaks and gene proximity. Proc. Natl. Acad. Sci. USA 109, 8989–8994 (2012)CrossRef
66.
Zurück zum Zitat C. Sissi, M. Palumbo, In front of and behind the replication fork: bacterial type IIA topoisomerases. Cell. Mol. Life Sci. 67, 2001–2024 (2010)CrossRef C. Sissi, M. Palumbo, In front of and behind the replication fork: bacterial type IIA topoisomerases. Cell. Mol. Life Sci. 67, 2001–2024 (2010)CrossRef
67.
Zurück zum Zitat V.E. Anderson, N. Osheroff, Type II topoisomerases as targets for quinolone antibacterials: turning Dr. Jekyll into Mr. Hyde. Curr. Pharm. Des. 7, 337–353 (2001)CrossRef V.E. Anderson, N. Osheroff, Type II topoisomerases as targets for quinolone antibacterials: turning Dr. Jekyll into Mr. Hyde. Curr. Pharm. Des. 7, 337–353 (2001)CrossRef
70.
Zurück zum Zitat A. Morrison, N.R. Cozzarelli, Contacts between DNA gyrase and its binding site on DNA: features of symmetry and asymmetry revealed by protection from nucleases. Proc. Natl. Acad. Sci. USA 78, 1416–1420 (1981)CrossRef A. Morrison, N.R. Cozzarelli, Contacts between DNA gyrase and its binding site on DNA: features of symmetry and asymmetry revealed by protection from nucleases. Proc. Natl. Acad. Sci. USA 78, 1416–1420 (1981)CrossRef
71.
Zurück zum Zitat D.A. Koster, A. Crut, S. Shuman, M.A. Bjornsti, N.H. Dekker, Cellular strategies for regulating DNA supercoiling: a single-molecule perspective. Cell 142, 519–530 (2010)CrossRef D.A. Koster, A. Crut, S. Shuman, M.A. Bjornsti, N.H. Dekker, Cellular strategies for regulating DNA supercoiling: a single-molecule perspective. Cell 142, 519–530 (2010)CrossRef
72.
Zurück zum Zitat J. Kato, Y. Nishimura, R. Imamura, H. Niki, S. Hiraga, H. Suzuki, New topoisomerase essential for chromosome segregation in E. coli. Cell 63, 393–404 (1990)CrossRef J. Kato, Y. Nishimura, R. Imamura, H. Niki, S. Hiraga, H. Suzuki, New topoisomerase essential for chromosome segregation in E. coli. Cell 63, 393–404 (1990)CrossRef
73.
Zurück zum Zitat H. Hiasa, K.J. Marians, Topoisomerase IV can support oriC DNA replication in vitro. J. Biol. Chem. 269, 16371–16375 (1994) H. Hiasa, K.J. Marians, Topoisomerase IV can support oriC DNA replication in vitro. J. Biol. Chem. 269, 16371–16375 (1994)
74.
Zurück zum Zitat E.L. Zechiedrich, A.B. Khodursky, S. Bachellier, R. Schneider, D. Chen, D.M. Lilley, N.R. Cozzarelli, Roles of topoisomerases in maintaining steady-state DNA supercoiling in Escherichia coli. J. Biol. Chem. 275, 8103–8113 (2000)CrossRef E.L. Zechiedrich, A.B. Khodursky, S. Bachellier, R. Schneider, D. Chen, D.M. Lilley, N.R. Cozzarelli, Roles of topoisomerases in maintaining steady-state DNA supercoiling in Escherichia coli. J. Biol. Chem. 275, 8103–8113 (2000)CrossRef
75.
Zurück zum Zitat N.J. Crisona, T.R. Strick, D. Bensimon, V. Croquette, N.R. Cozzarelli, Preferential relaxation of positively supercoiled DNA by E. coli topoisomerase IV in single-molecule and ensemble measurements. Genes Dev. 14, 2881–2892 (2000)CrossRef N.J. Crisona, T.R. Strick, D. Bensimon, V. Croquette, N.R. Cozzarelli, Preferential relaxation of positively supercoiled DNA by E. coli topoisomerase IV in single-molecule and ensemble measurements. Genes Dev. 14, 2881–2892 (2000)CrossRef
76.
Zurück zum Zitat X. Wang, R. Reyes-Lamothe, D.J. Sherratt, Modulation of Escherichia coli sister chromosome cohesion by topoisomerase IV. Genes Dev. 22, 2426–2433 (2008)CrossRef X. Wang, R. Reyes-Lamothe, D.J. Sherratt, Modulation of Escherichia coli sister chromosome cohesion by topoisomerase IV. Genes Dev. 22, 2426–2433 (2008)CrossRef
77.
Zurück zum Zitat M.C. Joshi, D. Magnan, T.P. Montminy, M. Lies, N. Stepankiw, D. Bates, Regulation of sister chromosome cohesion by the replication fork tracking protein SeqA. PLoS Genet. 9, e1003673 (2013)CrossRef M.C. Joshi, D. Magnan, T.P. Montminy, M. Lies, N. Stepankiw, D. Bates, Regulation of sister chromosome cohesion by the replication fork tracking protein SeqA. PLoS Genet. 9, e1003673 (2013)CrossRef
78.
Zurück zum Zitat P. Zawadzki, M. Stracy, K. Ginda, K. Zawadzka, C. Lesterlin, A.N. Kapanidis, D.J. Sherratt, The localization and action of topoisomerase IV in Escherichia coli chromosome segregation is coordinated by the SMC complex. MukBEF. Cell Rep. 13, 2587–2596 (2015)CrossRef P. Zawadzki, M. Stracy, K. Ginda, K. Zawadzka, C. Lesterlin, A.N. Kapanidis, D.J. Sherratt, The localization and action of topoisomerase IV in Escherichia coli chromosome segregation is coordinated by the SMC complex. MukBEF. Cell Rep. 13, 2587–2596 (2015)CrossRef
79.
Zurück zum Zitat N.P. Higgins, N.R. Cozzarelli, The binding of gyrase to DNA: analysis by retention by nitrocellulose filters. Nucleic Acids Res. 10, 6833–6847 (1982)CrossRef N.P. Higgins, N.R. Cozzarelli, The binding of gyrase to DNA: analysis by retention by nitrocellulose filters. Nucleic Acids Res. 10, 6833–6847 (1982)CrossRef
80.
Zurück zum Zitat K.R. Madden, L. Stewart, J.J. Champoux, Preferential binding of human topoisomerase I to superhelical DNA. EMBO J. 14, 5399–5409 (1995)CrossRef K.R. Madden, L. Stewart, J.J. Champoux, Preferential binding of human topoisomerase I to superhelical DNA. EMBO J. 14, 5399–5409 (1995)CrossRef
81.
Zurück zum Zitat N. Osheroff, Eukaryotic topoisomerase II. Characterization of enzyme turnover. J. Biol. Chem. 261, 9944–9950 (1986) N. Osheroff, Eukaryotic topoisomerase II. Characterization of enzyme turnover. J. Biol. Chem. 261, 9944–9950 (1986)
82.
Zurück zum Zitat E.L. Zechiedrich, N. Osheroff, Eukaryotic topoisomerases recognize nucleic acid topology by preferentially interacting with DNA crossovers. EMBO J. 9, 4555–4562 (1990)CrossRef E.L. Zechiedrich, N. Osheroff, Eukaryotic topoisomerases recognize nucleic acid topology by preferentially interacting with DNA crossovers. EMBO J. 9, 4555–4562 (1990)CrossRef
83.
Zurück zum Zitat J. Roca, J.M. Berger, J.C. Wang, On the simultaneous binding of eukaryotic DNA topoisomerase II to a pair of double-stranded DNA helices. J. Biol. Chem. 268, 14250–14255 (1993) J. Roca, J.M. Berger, J.C. Wang, On the simultaneous binding of eukaryotic DNA topoisomerase II to a pair of double-stranded DNA helices. J. Biol. Chem. 268, 14250–14255 (1993)
84.
Zurück zum Zitat A. Patel, L. Yakovleva, S. Shuman, A. Mondragon, Crystal structure of a bacterial topoisomerase IB in complex with DNA reveals a secondary DNA binding site. Structure 18, 725–733 (2010)CrossRef A. Patel, L. Yakovleva, S. Shuman, A. Mondragon, Crystal structure of a bacterial topoisomerase IB in complex with DNA reveals a secondary DNA binding site. Structure 18, 725–733 (2010)CrossRef
85.
Zurück zum Zitat K. Kirkegaard, J.C. Wang, Bacterial DNA topoisomerase I can relax positively supercoiled DNA containing a single-stranded loop. J. Mol. Biol. 185, 625–637 (1985)CrossRef K. Kirkegaard, J.C. Wang, Bacterial DNA topoisomerase I can relax positively supercoiled DNA containing a single-stranded loop. J. Mol. Biol. 185, 625–637 (1985)CrossRef
86.
Zurück zum Zitat J.J. Champoux, R. Dulbecco, An activity from mammalian cells that untwists superhelical DNA–a possible swivel for DNA replication (polyoma-ethidium bromide-mouse-embryo cells-dye binding assay). Proc. Natl. Acad. Sci. USA 69, 143–146 (1972)CrossRef J.J. Champoux, R. Dulbecco, An activity from mammalian cells that untwists superhelical DNA–a possible swivel for DNA replication (polyoma-ethidium bromide-mouse-embryo cells-dye binding assay). Proc. Natl. Acad. Sci. USA 69, 143–146 (1972)CrossRef
87.
Zurück zum Zitat R.F. Frohlich, C. Veigaard, F.F. Andersen, A.K. McClendon, A.C. Gentry, A.H. Andersen, N. Osheroff, T. Stevnsner, B.R. Knudsen, Tryptophane-205 of human topoisomerase I is essential for camptothecin inhibition of negative but not positive supercoil removal. Nucleic Acids Res. 35, 6170–6180 (2007)CrossRef R.F. Frohlich, C. Veigaard, F.F. Andersen, A.K. McClendon, A.C. Gentry, A.H. Andersen, N. Osheroff, T. Stevnsner, B.R. Knudsen, Tryptophane-205 of human topoisomerase I is essential for camptothecin inhibition of negative but not positive supercoil removal. Nucleic Acids Res. 35, 6170–6180 (2007)CrossRef
88.
Zurück zum Zitat L. Sari, I. Andricioaei, Rotation of DNA around intact strand in human topoisomerase I implies distinct mechanisms for positive and negative supercoil relaxation. Nucleic Acids Res. 33, 6621–6634 (2005)CrossRef L. Sari, I. Andricioaei, Rotation of DNA around intact strand in human topoisomerase I implies distinct mechanisms for positive and negative supercoil relaxation. Nucleic Acids Res. 33, 6621–6634 (2005)CrossRef
89.
Zurück zum Zitat G. Charvin, D. Bensimon, V. Croquette, Single-molecule study of DNA unlinking by eukaryotic and prokaryotic type-II topoisomerases. Proc. Natl. Acad. Sci. USA 100, 9820–9825 (2003)CrossRef G. Charvin, D. Bensimon, V. Croquette, Single-molecule study of DNA unlinking by eukaryotic and prokaryotic type-II topoisomerases. Proc. Natl. Acad. Sci. USA 100, 9820–9825 (2003)CrossRef
90.
Zurück zum Zitat K.C. Neuman, G. Charvin, D. Bensimon, V. Croquette, Mechanisms of chiral discrimination by topoisomerase IV. Proc. Natl. Acad. Sci. USA 106, 6986–6991 (2009)CrossRef K.C. Neuman, G. Charvin, D. Bensimon, V. Croquette, Mechanisms of chiral discrimination by topoisomerase IV. Proc. Natl. Acad. Sci. USA 106, 6986–6991 (2009)CrossRef
91.
Zurück zum Zitat R.E. Ashley, A. Dittmore, S.A. McPherson, C.L. Turnbough Jr., K.C. Neuman, N. Osheroff, Activities of gyrase and topoisomerase IV on positively supercoiled DNA. Nucleic Acids Res. 45, 9611–9624 (2017)CrossRef R.E. Ashley, A. Dittmore, S.A. McPherson, C.L. Turnbough Jr., K.C. Neuman, N. Osheroff, Activities of gyrase and topoisomerase IV on positively supercoiled DNA. Nucleic Acids Res. 45, 9611–9624 (2017)CrossRef
92.
Zurück zum Zitat A.K. McClendon, A.C. Rodriguez, N. Osheroff, Human topoisomerase IIα rapidly relaxes positively supercoiled DNA: implications for enzyme action ahead of replication forks. J. Biol. Chem. 280, 39337–39345 (2005)CrossRef A.K. McClendon, A.C. Rodriguez, N. Osheroff, Human topoisomerase IIα rapidly relaxes positively supercoiled DNA: implications for enzyme action ahead of replication forks. J. Biol. Chem. 280, 39337–39345 (2005)CrossRef
93.
Zurück zum Zitat Y. Seol, A.C. Gentry, N. Osheroff, K.C. Neuman, Chiral discrimination and writhe-dependent relaxation mechanism of human topoisomerase IIα. J. Biol. Chem. 288, 13695–13703 (2013)CrossRef Y. Seol, A.C. Gentry, N. Osheroff, K.C. Neuman, Chiral discrimination and writhe-dependent relaxation mechanism of human topoisomerase IIα. J. Biol. Chem. 288, 13695–13703 (2013)CrossRef
94.
Zurück zum Zitat K.D. Corbett, A.J. Schoeffler, N.D. Thomsen, J.M. Berger, The structural basis for substrate specificity in DNA topoisomerase IV. J. Mol. Biol. 351, 545–561 (2005)CrossRef K.D. Corbett, A.J. Schoeffler, N.D. Thomsen, J.M. Berger, The structural basis for substrate specificity in DNA topoisomerase IV. J. Mol. Biol. 351, 545–561 (2005)CrossRef
95.
Zurück zum Zitat A.K. McClendon, A.C. Gentry, J.S. Dickey, M. Brinch, S. Bendsen, A.H. Andersen, N. Osheroff, Bimodal recognition of DNA geometry by human topoisomerase IIα: preferential relaxation of positively supercoiled DNA requires elements in the C-terminal domain. Biochemistry 47, 13169–13178 (2008)CrossRef A.K. McClendon, A.C. Gentry, J.S. Dickey, M. Brinch, S. Bendsen, A.H. Andersen, N. Osheroff, Bimodal recognition of DNA geometry by human topoisomerase IIα: preferential relaxation of positively supercoiled DNA requires elements in the C-terminal domain. Biochemistry 47, 13169–13178 (2008)CrossRef
96.
Zurück zum Zitat A.K. McClendon, J.S. Dickey, N. Osheroff, Ability of viral topoisomerase II to discern the handedness of supercoiled DNA: bimodal recognition of DNA geometry by type II enzymes. Biochemistry 45, 11674–11680 (2006)CrossRef A.K. McClendon, J.S. Dickey, N. Osheroff, Ability of viral topoisomerase II to discern the handedness of supercoiled DNA: bimodal recognition of DNA geometry by type II enzymes. Biochemistry 45, 11674–11680 (2006)CrossRef
97.
Zurück zum Zitat T.R. Strick, V. Croquette, D. Bensimon, Single-molecule analysis of DNA uncoiling by a type II topoisomerase. Nature 404, 901–904 (2000)CrossRef T.R. Strick, V. Croquette, D. Bensimon, Single-molecule analysis of DNA uncoiling by a type II topoisomerase. Nature 404, 901–904 (2000)CrossRef
98.
Zurück zum Zitat R.E. Ashley, T.R. Blower, J.M. Berger, N. Osheroff, Recognition of DNA supercoil geometry by Mycobacterium tuberculosis gyrase. Biochemistry 56, 5440–5448 (2017)CrossRef R.E. Ashley, T.R. Blower, J.M. Berger, N. Osheroff, Recognition of DNA supercoil geometry by Mycobacterium tuberculosis gyrase. Biochemistry 56, 5440–5448 (2017)CrossRef
99.
Zurück zum Zitat J.L. Nitiss, Targeting DNA topoisomerase II in cancer chemotherapy. Nat. Rev. Cancer 9, 338–350 (2009)CrossRef J.L. Nitiss, Targeting DNA topoisomerase II in cancer chemotherapy. Nat. Rev. Cancer 9, 338–350 (2009)CrossRef
100.
Zurück zum Zitat Y. Pommier, DNA topoisomerase I inhibitors: chemistry, biology, and interfacial inhibition. Chem. Rev. 109, 2894–2902 (2009)CrossRef Y. Pommier, DNA topoisomerase I inhibitors: chemistry, biology, and interfacial inhibition. Chem. Rev. 109, 2894–2902 (2009)CrossRef
101.
Zurück zum Zitat Y. Pommier, E. Leo, H. Zhang, C. Marchand, DNA topoisomerases and their poisoning by anticancer and antibacterial drugs. Chem. Biol. 17, 421–433 (2010)CrossRef Y. Pommier, E. Leo, H. Zhang, C. Marchand, DNA topoisomerases and their poisoning by anticancer and antibacterial drugs. Chem. Biol. 17, 421–433 (2010)CrossRef
102.
Zurück zum Zitat Y. Pommier, C. Marchand, Interfacial inhibitors: targeting macromolecular complexes. Nat. Rev. Drug Discov. 11, 25–36 (2012)CrossRef Y. Pommier, C. Marchand, Interfacial inhibitors: targeting macromolecular complexes. Nat. Rev. Drug Discov. 11, 25–36 (2012)CrossRef
103.
Zurück zum Zitat K.J. Aldred, R.J. Kerns, N. Osheroff, Mechanism of quinolone action and resistance. Biochemistry 53, 1565–1574 (2014)CrossRef K.J. Aldred, R.J. Kerns, N. Osheroff, Mechanism of quinolone action and resistance. Biochemistry 53, 1565–1574 (2014)CrossRef
104.
Zurück zum Zitat D.C. Hooper, G.A. Jacoby, Mechanisms of drug resistance: quinolone resistance. Ann. N. Y. Acad. Sci. 1354, 12–31 (2015)CrossRef D.C. Hooper, G.A. Jacoby, Mechanisms of drug resistance: quinolone resistance. Ann. N. Y. Acad. Sci. 1354, 12–31 (2015)CrossRef
105.
Zurück zum Zitat A.K. McClendon, N. Osheroff, The geometry of DNA supercoils modulates topoisomerase-mediated DNA cleavage and enzyme response to anticancer drugs. Biochemistry 45, 3040–3050 (2006)CrossRef A.K. McClendon, N. Osheroff, The geometry of DNA supercoils modulates topoisomerase-mediated DNA cleavage and enzyme response to anticancer drugs. Biochemistry 45, 3040–3050 (2006)CrossRef
106.
Zurück zum Zitat A.C. Gentry, S. Juul, C. Veigaard, B.R. Knudsen, N. Osheroff, The geometry of DNA supercoils modulates the DNA cleavage activity of human topoisomerase I. Nucleic Acids Res. 39, 1014–1022 (2011)CrossRef A.C. Gentry, S. Juul, C. Veigaard, B.R. Knudsen, N. Osheroff, The geometry of DNA supercoils modulates the DNA cleavage activity of human topoisomerase I. Nucleic Acids Res. 39, 1014–1022 (2011)CrossRef
107.
Zurück zum Zitat R.H. Lindsey Jr., M. Pendleton, R.E. Ashley, S.L. Mercer, J.E. Deweese, N. Osheroff, Catalytic core of human topoisomerase IIα: insights into enzyme-DNA interactions and drug mechanism. Biochemistry 53, 6595–65602 (2014)CrossRef R.H. Lindsey Jr., M. Pendleton, R.E. Ashley, S.L. Mercer, J.E. Deweese, N. Osheroff, Catalytic core of human topoisomerase IIα: insights into enzyme-DNA interactions and drug mechanism. Biochemistry 53, 6595–65602 (2014)CrossRef
108.
Zurück zum Zitat E.G. Gibson, T.R. Blower, M. Cacho, B. Bax, J.M. Berger, N. Osheroff, Mechanism of action of Mycobacterium tuberculosis gyrase inhibitors: a novel class of gyrase poisons. ACS Infect. Dis. 4, 1211–1222 (2018)CrossRef E.G. Gibson, T.R. Blower, M. Cacho, B. Bax, J.M. Berger, N. Osheroff, Mechanism of action of Mycobacterium tuberculosis gyrase inhibitors: a novel class of gyrase poisons. ACS Infect. Dis. 4, 1211–1222 (2018)CrossRef
Metadaten
Titel
Regulation of DNA Topology by Topoisomerases: Mathematics at the Molecular Level
verfasst von
Rachel E. Ashley
Neil Osheroff
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-030-16031-9_20