Skip to main content

Tipp

Weitere Kapitel dieses Buchs durch Wischen aufrufen

2019 | OriginalPaper | Buchkapitel

6. Regulation of Genome Editing in Plant Biotechnology: Japan

share
TEILEN

Abstract

To regulate the research and industrial uses of genetically modified organisms (GMOs), Japan enacted the Act on the Conservation and Sustainable Use of Biological Diversity through Regulations on the Use of Living Modified Organisms 2003. This law can be regarded as a product-based GMO regulation. To date, Japan has approved 133 GM crop varieties for cultivation, distribution, and import, thus becoming a major importer of GM crops in the world. However, no GM crops have been commercially cultivated in Japan, except one ornamental GM flower. A recent consumer survey showed that 40.7% of respondents expressed concern over the safety of GM food products. Meanwhile, some Japanese researchers have already used robust genome editing techniques, such as CRISPR-Cas9, and reported gene-disrupted apple, potato, soybean, tomato and rice. In 2017, a GM rice variety was approved as Japan’s first field trial of a genome edited crop. In contrast, some citizen groups expressed opposition to the cultivation test and demanded the regulation of genome edited crops. However, relevant ministries have not considered the regulation of any uses of genome editing in earnest. The current state of Japan does not warrant a promising future of genome edited crops.
Fußnoten
1
IMF (2016).
 
2
MAFF (2017d).
 
3
MAFF (2017b).
 
4
Ibid.
 
5
Ibid.
 
6
Biosafety Clearing House (2018).
 
7
MAFF (2017a).
 
8
Suntory (2018).
 
9
CAA (2017b).
 
10
Lusser et al. (2011).
 
11
Gaj et al. (2013) and Jiang and Doudna (2017).
 
12
Araki and Ishii (2015).
 
13
EFSA (2012).
 
14
Op. cit. 10.
 
15
Nishitani et al. (2016), Nakajima et al. (2017), Sawai et al. (2014), Kanazashi et al. (2018), Ito et al. (2015), and Endo et al. (2016).
 
16
MOE (2017).
 
17
Ministry of Justice (2018).
 
18
Ibid.
 
19
Biosafety Clearing House (2000).
 
20
Op.cit 17.
 
21
MEXT-MHLW-MAFF-METI-MOE (2003b).
 
22
Ishii and Araki (2017).
 
23
SCJ (2014).
 
24
MEXT-MHLW-MAFF-METI-MOE (2003a).
 
25
Op. cit.7.
 
26
MAFF (2017c).
 
27
MAFF (2018b).
 
28
Ryffel (2014).
 
29
MOE (2016).
 
30
MAFF (2018a).
 
31
Gaj et al. (2013).
 
32
Jiang and Doudna (2017).
 
33
Kim and Kim (2016).
 
34
Op. Cit. 32.
 
35
Tang et al. (2017).
 
36
Op.cit.21.
 
37
Op.cit.10.
 
38
Svitashev et al. (2016) and Butler et al. (2015).
 
39
Burgos et al. (2014).
 
40
Busconi et al. (2012) and Burgos et al. (2014).
 
41
Bergelson et al. (1998).
 
42
Ishii and Araki (2016).
 
43
Joung (2015).
 
44
Op.cit.15.
 
45
J-BCH (2018).
 
46
Luo et al. (2015).
 
47
AAGS (2014).
 
48
Jackson (2016).
 
49
Op.cit.16.
 
50
Segawa and Hatano (2012) and Nishiyama (2012).
 
51
Segawa and Hatano (2012).
 
52
Op.cit.23.
 
53
MAFF (2015).
 
54
Op.cit.16.
 
55
Op.cit. 42.
 
56
CAA (2017a).
 
57
EC (2013).
 
58
Ibid.
 
59
Op.cit. 56.
 
60
CAA (2018a).
 
61
Hirasawa (2017).
 
62
CAA (2018b).
 
63
Op. Cit. 9.
 
64
Op.cit. 17.
 
65
Biosafety Clearing House (2017).
 
66
Hirosaki University and NARO (2017).
 
67
Tane to Syoku to Hito @Forum (2017a).
 
68
Seikatsu Club (2017).
 
69
Tane to Syoku to Hito @Forum (2017b).
 
70
Op.cit. 42.
 
Literatur
Zurück zum Zitat Araki M, Ishii T (2015) Towards social acceptance of plant breeding by genome editing. Trends Plant Sci 20:145–149 CrossRef Araki M, Ishii T (2015) Towards social acceptance of plant breeding by genome editing. Trends Plant Sci 20:145–149 CrossRef
Zurück zum Zitat Bergelson J, Purrington CB, Wichmann G (1998) Promiscuity in transgenic plants. Nature 395:25 CrossRef Bergelson J, Purrington CB, Wichmann G (1998) Promiscuity in transgenic plants. Nature 395:25 CrossRef
Zurück zum Zitat Burgos NR, Singh V, Tseng TM, Black H et al (2014) The impact of herbicide-resistant rice technology on phenotypic diversity and population structure of United States weedy rice. Plant Physiol 166:1208–1220 CrossRef Burgos NR, Singh V, Tseng TM, Black H et al (2014) The impact of herbicide-resistant rice technology on phenotypic diversity and population structure of United States weedy rice. Plant Physiol 166:1208–1220 CrossRef
Zurück zum Zitat Busconi M, Rossi D, Lorenzoni C et al (2012) Spread of herbicide-resistant weedy rice (red rice, Oryza sativa L.) after 5 years of Clearfield rice cultivation in Italy. Plant Biol 14:751–759 CrossRef Busconi M, Rossi D, Lorenzoni C et al (2012) Spread of herbicide-resistant weedy rice (red rice, Oryza sativa L.) after 5 years of Clearfield rice cultivation in Italy. Plant Biol 14:751–759 CrossRef
Zurück zum Zitat Butler NM, Atkins PA, Voytas DF et al (2015) Generation and inheritance of targeted mutations in Potato (Solanum tuberosum L.) using the CRISPR/Cas system. PLoS One 10:e0144591 CrossRef Butler NM, Atkins PA, Voytas DF et al (2015) Generation and inheritance of targeted mutations in Potato (Solanum tuberosum L.) using the CRISPR/Cas system. PLoS One 10:e0144591 CrossRef
Zurück zum Zitat Endo M, Mikami M, Toki S (2016) Biallelic gene targeting in Rice. Plant Physiol 170:667–677 CrossRef Endo M, Mikami M, Toki S (2016) Biallelic gene targeting in Rice. Plant Physiol 170:667–677 CrossRef
Zurück zum Zitat Gaj T, Gersbach CA, Barbas CF 3rd (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31:397–405 CrossRef Gaj T, Gersbach CA, Barbas CF 3rd (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31:397–405 CrossRef
Zurück zum Zitat Hirasawa Y (2017) Call for reconsideration: labelling of ‘genetic recombination technology not applied’ may misleading. Sankei Shimbun, 6 November 2017 Hirasawa Y (2017) Call for reconsideration: labelling of ‘genetic recombination technology not applied’ may misleading. Sankei Shimbun, 6 November 2017
Zurück zum Zitat Ishii T, Araki M (2016) Consumer acceptance of food crops developed by genome editing. Plant Cell Rep 35:1507–1518 CrossRef Ishii T, Araki M (2016) Consumer acceptance of food crops developed by genome editing. Plant Cell Rep 35:1507–1518 CrossRef
Zurück zum Zitat Ishii T, Araki M (2017) A future scenario of the global regulatory landscape regarding genome-edited crops. GM Crops Food 8:44–56 CrossRef Ishii T, Araki M (2017) A future scenario of the global regulatory landscape regarding genome-edited crops. GM Crops Food 8:44–56 CrossRef
Zurück zum Zitat Ito Y, Nishizawa-Yokoi A, Endo M et al (2015) CRISPR/Cas9-mediated mutagenesis of the RIN locus that regulates tomato fruit ripening. Biochem Biophys Res Commun 467:76–82 CrossRef Ito Y, Nishizawa-Yokoi A, Endo M et al (2015) CRISPR/Cas9-mediated mutagenesis of the RIN locus that regulates tomato fruit ripening. Biochem Biophys Res Commun 467:76–82 CrossRef
Zurück zum Zitat Jiang F, Doudna JA (2017) CRISPR-Cas9 structures and mechanisms. Annu Rev Biophys 46:505–529 CrossRef Jiang F, Doudna JA (2017) CRISPR-Cas9 structures and mechanisms. Annu Rev Biophys 46:505–529 CrossRef
Zurück zum Zitat Joung JK (2015) Unwanted mutations: standards needed for gene-editing errors. Nature 523:158 CrossRef Joung JK (2015) Unwanted mutations: standards needed for gene-editing errors. Nature 523:158 CrossRef
Zurück zum Zitat Kanazashi Y, Hirose A, Takahashi I et al (2018) Simultaneous site-directed mutagenesis of duplicated loci in soybean using a single guide RNA. Plant Cell Rep 37:553–563 CrossRef Kanazashi Y, Hirose A, Takahashi I et al (2018) Simultaneous site-directed mutagenesis of duplicated loci in soybean using a single guide RNA. Plant Cell Rep 37:553–563 CrossRef
Zurück zum Zitat Kim J, Kim J-S (2016) Bypassing GMO regulations with CRISPR gene editing. Nat Biotechnol 34:1014 CrossRef Kim J, Kim J-S (2016) Bypassing GMO regulations with CRISPR gene editing. Nat Biotechnol 34:1014 CrossRef
Zurück zum Zitat Luo S, Li J, Stoddard TJ et al (2015) Non-transgenic plant genome editing using purified sequence-specific nucleases. Mol Plant 8:1425–1427 CrossRef Luo S, Li J, Stoddard TJ et al (2015) Non-transgenic plant genome editing using purified sequence-specific nucleases. Mol Plant 8:1425–1427 CrossRef
Zurück zum Zitat Nakajima I, Ban Y, Azuma A et al (2017) CRISPR/Cas9-mediated targeted mutagenesis in grape. PLoS One 12:e0177966 CrossRef Nakajima I, Ban Y, Azuma A et al (2017) CRISPR/Cas9-mediated targeted mutagenesis in grape. PLoS One 12:e0177966 CrossRef
Zurück zum Zitat Nishitani C, Hirai N, Komori S et al (2016) Efficient genome editing in Apple using a CRISPR/Cas9 system. Sci Rep 6:31481 CrossRef Nishitani C, Hirai N, Komori S et al (2016) Efficient genome editing in Apple using a CRISPR/Cas9 system. Sci Rep 6:31481 CrossRef
Zurück zum Zitat Nishiyama A (2012) More complex techniques emerged in crop genetic recombination: where can a line of genetic recombination be drawn? Response by Japan government delayed in global discussions. Nikkei Shimbun on 28 August 2018 Nishiyama A (2012) More complex techniques emerged in crop genetic recombination: where can a line of genetic recombination be drawn? Response by Japan government delayed in global discussions. Nikkei Shimbun on 28 August 2018
Zurück zum Zitat Ryffel GU (2014) Transgene flow: facts, speculations and possible countermeasures. GM Crops Food 5:249–258 CrossRef Ryffel GU (2014) Transgene flow: facts, speculations and possible countermeasures. GM Crops Food 5:249–258 CrossRef
Zurück zum Zitat Sawai S, Ohyama K, Yasumoto S et al (2014) Sterol side chain reductase 2 is a key enzyme in the biosynthesis of cholesterol, the common precursor of toxic steroidal glycoalkaloids in potato. Plant Cell 26:3763–3774 CrossRef Sawai S, Ohyama K, Yasumoto S et al (2014) Sterol side chain reductase 2 is a key enzyme in the biosynthesis of cholesterol, the common precursor of toxic steroidal glycoalkaloids in potato. Plant Cell 26:3763–3774 CrossRef
Zurück zum Zitat Segawa S, Hatano Y (2012) No vestiges after genetic modification: new techniques applied in crops by Tokushima University and Hiroshima University. Asahi Shimbun on 22 August 2018 Segawa S, Hatano Y (2012) No vestiges after genetic modification: new techniques applied in crops by Tokushima University and Hiroshima University. Asahi Shimbun on 22 August 2018
Zurück zum Zitat Svitashev S, Schwartz C, Lenderts B et al (2016) Genome editing in maize directed by CRISPR-Cas9 ribonucleoprotein complexes. Nat Commun 7:13274 CrossRef Svitashev S, Schwartz C, Lenderts B et al (2016) Genome editing in maize directed by CRISPR-Cas9 ribonucleoprotein complexes. Nat Commun 7:13274 CrossRef
Zurück zum Zitat Tang X, Lowder LG, Zhang T et al (2017) A CRISPR-Cpf1 system for efficient genome editing and transcriptional repression in plants. Nat Plants 3:17018 CrossRef Tang X, Lowder LG, Zhang T et al (2017) A CRISPR-Cpf1 system for efficient genome editing and transcriptional repression in plants. Nat Plants 3:17018 CrossRef
Metadaten
Titel
Regulation of Genome Editing in Plant Biotechnology: Japan
verfasst von
Tetsuya Ishii
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-030-17119-3_6

Premium Partner