Skip to main content
Erschienen in: Metallurgical and Materials Transactions A 5/2019

20.02.2019

Reinterpretation of the Mean Field Hypothesis in Analytical Models of Ostwald Ripening and Grain Growth

verfasst von: Paolo Emilio Di Nunzio

Erschienen in: Metallurgical and Materials Transactions A | Ausgabe 5/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A long right tail is a common feature of experimental quasi-stationary size distributions of particles and grains that is not explained by the classical theories based on the mean field hypothesis. In this work, it is shown that the “pairwise interaction” approach, here presented in a comprehensive exposition involving both Ostwald ripening and grain growth, is a valid alternative to classical mean field theories since it produces more realistic predictions of the distribution shapes. The new analytical models are based on the mean field concept but rely on a detailed physical description of the elementary interactions responsible for the exchange of matter. They are jointly reviewed and compared with the corresponding classical Lifshitz–Slyozov–Wagner and Hillert models. The interactions are treated as a sum of elementary and specific contributions rather than as a generalized exchange with the mean field. The framework is complemented by the introduction of the “interaction volume” in Ostwald ripening and of the “local grain boundary curvature” in grain growth which are both size-dependent and permit to represent more precisely the local physics of the exchanges. The excellent results obtained in reproducing the experiments without any ad hoc parameters suggest that the mean field hypothesis adopted in the classical theories to describe the environment of a growing particle or grain represents a too drastic approximation. Therefore, it is proposed to replace the classical mean field by a “local mean field,” i.e., the ensemble of actual mean environments interacting with any single element of a given size. This alternative assumption induces a higher growth rate for large particles or grains compared with their respective mean field theories, thus producing right-skewed asymptotic distributions. For particles at small volume fraction the stationary distribution resembles a lognormal function, whereas for grains in normal grain growth regime the Rayleigh distribution is found as solution.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
2.
3.
4.
Zurück zum Zitat [4] P.E. Di Nunzio, Metall. Mater. Trans. A, 2002, vol. 33, pp. 3329-3337. [4] P.E. Di Nunzio, Metall. Mater. Trans. A, 2002, vol. 33, pp. 3329-3337.
6.
Zurück zum Zitat [6] O. Hunderi and N. Ryum, Mater. Sci. Forum, 1992, vol. 94-96, pp. 89-100.CrossRef [6] O. Hunderi and N. Ryum, Mater. Sci. Forum, 1992, vol. 94-96, pp. 89-100.CrossRef
8.
Zurück zum Zitat [8] M.P. Anderson, D.J. Srolovitz, G.S. Grest, and P.S. Sahni, Acta Metall., 1984, vol. 32, pp. 783-792.CrossRef [8] M.P. Anderson, D.J. Srolovitz, G.S. Grest, and P.S. Sahni, Acta Metall., 1984, vol. 32, pp. 783-792.CrossRef
9.
Zurück zum Zitat [9] D.J. Srolovitz, M.P. Anderson, P. S. Sahni, and G.S. Grest, Acta Metall., 1984, vol. 32, pp. 793-802.CrossRef [9] D.J. Srolovitz, M.P. Anderson, P. S. Sahni, and G.S. Grest, Acta Metall., 1984, vol. 32, pp. 793-802.CrossRef
10.
Zurück zum Zitat [10] D.J. Srolovitz, M.P. Anderson, G.S. Grest, and P.S. Sahni, Acta Metall., 1984, vol. 32, pp. 1429-1438.CrossRef [10] D.J. Srolovitz, M.P. Anderson, G.S. Grest, and P.S. Sahni, Acta Metall., 1984, vol. 32, pp. 1429-1438.CrossRef
11.
12.
Zurück zum Zitat [12] D. Zöllner and P. Streitenberger, Scripta Mater., 2006, vol. 54, pp. 1697-1702.CrossRef [12] D. Zöllner and P. Streitenberger, Scripta Mater., 2006, vol. 54, pp. 1697-1702.CrossRef
13.
16.
Zurück zum Zitat [16] H.L. Ding, Y.Z. He, L.F. Liu and W.J. Ding, J. Cryst. Growth, 2006, vol. 293, pp. 489-497.CrossRef [16] H.L. Ding, Y.Z. He, L.F. Liu and W.J. Ding, J. Cryst. Growth, 2006, vol. 293, pp. 489-497.CrossRef
17.
Zurück zum Zitat [17] S. Raghavan and S.S. Sahay, Mater. Sci. Eng. A, 2007, vol. 445-446, pp. 203-209.CrossRef [17] S. Raghavan and S.S. Sahay, Mater. Sci. Eng. A, 2007, vol. 445-446, pp. 203-209.CrossRef
18.
Zurück zum Zitat [18] C.E. Krill III and L.-Q. Chen, Acta Mater., 2002, vol. 50, pp. 3057-3073. [18] C.E. Krill III and L.-Q. Chen, Acta Mater., 2002, vol. 50, pp. 3057-3073.
19.
Zurück zum Zitat [19] S. Xiao and W. Hu, J. Cryst. Growth, 2006, vol. 286, pp. 512-517.CrossRef [19] S. Xiao and W. Hu, J. Cryst. Growth, 2006, vol. 286, pp. 512-517.CrossRef
20.
Zurück zum Zitat [20] S.M. Foiles, Mater. Sci. Forum, 2012, vol. 715-716, pp. 599-604.CrossRef [20] S.M. Foiles, Mater. Sci. Forum, 2012, vol. 715-716, pp. 599-604.CrossRef
21.
Zurück zum Zitat J. Yin: Molecular Dynamics Study on the Grain Growth in Nanocrystalline Aluminum. Mechanical Engineering Masters Theses, Paper 4, 2016. J. Yin: Molecular Dynamics Study on the Grain Growth in Nanocrystalline Aluminum. Mechanical Engineering Masters Theses, Paper 4, 2016.
22.
Zurück zum Zitat [22] T. Kato, T. Nagai, Y. Sasajima and J. Onuki, Materials Trans., 2010, vol. 51, pp. 664-669.CrossRef [22] T. Kato, T. Nagai, Y. Sasajima and J. Onuki, Materials Trans., 2010, vol. 51, pp. 664-669.CrossRef
23.
24.
Zurück zum Zitat [24] K. Marthinsen, O. Hunderi and N. Ryum, Acta Mater., 1996, vol. 44, pp. 1681-1689.CrossRef [24] K. Marthinsen, O. Hunderi and N. Ryum, Acta Mater., 1996, vol. 44, pp. 1681-1689.CrossRef
25.
Zurück zum Zitat [25] P.R. Rios and M.E. Glicksman, Acta Mater., 2006, vol. 54, pp. 5313-5321.CrossRef [25] P.R. Rios and M.E. Glicksman, Acta Mater., 2006, vol. 54, pp. 5313-5321.CrossRef
26.
Zurück zum Zitat L.A. Barrales Mora, G. Gottstein and L.S. Shvindlerman, Acta Mater., 2008, vol. 56, pp. 5915-5926.CrossRef L.A. Barrales Mora, G. Gottstein and L.S. Shvindlerman, Acta Mater., 2008, vol. 56, pp. 5915-5926.CrossRef
27.
Zurück zum Zitat [27] P. Streitenberger and D. Zöllner, Acta Mater., 2011, vol. 59, pp. 4235-4243.CrossRef [27] P. Streitenberger and D. Zöllner, Acta Mater., 2011, vol. 59, pp. 4235-4243.CrossRef
28.
Zurück zum Zitat [28] A.E. Johnson and P.W. Voorhees, Acta Mater., 2014, vol. 67, pp. 134-144.CrossRef [28] A.E. Johnson and P.W. Voorhees, Acta Mater., 2014, vol. 67, pp. 134-144.CrossRef
29.
Zurück zum Zitat R. Darvishi Kamachali, A. Abbondandolo, K.F. Siburg and I. Steinbach, Acta Mater., 2015, vol. 90, pp. 252-258.CrossRef R. Darvishi Kamachali, A. Abbondandolo, K.F. Siburg and I. Steinbach, Acta Mater., 2015, vol. 90, pp. 252-258.CrossRef
30.
Zurück zum Zitat [30] R.T. DeHoff, B.R. Patterson, C.A. Sahi and S. Chiu, Acta Mater., 2015, vol. 100, pp. 240-246.CrossRef [30] R.T. DeHoff, B.R. Patterson, C.A. Sahi and S. Chiu, Acta Mater., 2015, vol. 100, pp. 240-246.CrossRef
31.
Zurück zum Zitat [31] P. Streitenberger and D. Zöllner, Acta Mater., 2015, vol. 88, pp. 334-345.CrossRef [31] P. Streitenberger and D. Zöllner, Acta Mater., 2015, vol. 88, pp. 334-345.CrossRef
32.
Zurück zum Zitat [32] C. Mießen, M. Liesenjohann, L.A. Barrales-Mora, L.S. Shvindlerman and G. Gottstein, Acta Mater., 2015 vol. 99, pp. 39-48.CrossRef [32] C. Mießen, M. Liesenjohann, L.A. Barrales-Mora, L.S. Shvindlerman and G. Gottstein, Acta Mater., 2015 vol. 99, pp. 39-48.CrossRef
33.
Zurück zum Zitat [33] K. McReynolds, K.-A. Wu and P.W. Voorhees, Acta Mater., 2016, vol. 120, pp. 264-272.CrossRef [33] K. McReynolds, K.-A. Wu and P.W. Voorhees, Acta Mater., 2016, vol. 120, pp. 264-272.CrossRef
34.
Zurück zum Zitat [34] J. Svoboda, P. Fratzl, G.A. Zickler and F.D. Fischer, Acta Mater., 2016, vol. 115, pp. 442-447.CrossRef [34] J. Svoboda, P. Fratzl, G.A. Zickler and F.D. Fischer, Acta Mater., 2016, vol. 115, pp. 442-447.CrossRef
35.
Zurück zum Zitat [35] V. Yadav and N. Moelans, Acta Mater., 2018, vol. 156, pp. 275-286.CrossRef [35] V. Yadav and N. Moelans, Acta Mater., 2018, vol. 156, pp. 275-286.CrossRef
36.
Zurück zum Zitat [36] V. Yadav and N. Moelans, Scripta Mater., 2018, vol. 142, pp. 148-152.CrossRef [36] V. Yadav and N. Moelans, Scripta Mater., 2018, vol. 142, pp. 148-152.CrossRef
37.
Zurück zum Zitat J. Gao, M. Wei. L. Zhang, Y. Du, Z. Liu and B. Huang, Metall. Mater. Trans. A, 2018, vol. 49, pp 6442–6456.CrossRef J. Gao, M. Wei. L. Zhang, Y. Du, Z. Liu and B. Huang, Metall. Mater. Trans. A, 2018, vol. 49, pp 6442–6456.CrossRef
38.
Zurück zum Zitat [38] I.M. Lifshitz and V.V. Slyozov, J. Phys. Chem. Solids, 1961, vol. 19, pp. 35-45.CrossRef [38] I.M. Lifshitz and V.V. Slyozov, J. Phys. Chem. Solids, 1961, vol. 19, pp. 35-45.CrossRef
39.
Zurück zum Zitat [39] C. Wagner, Z. Elektrochem., 1961, vol. 65, pp. 581-594. [39] C. Wagner, Z. Elektrochem., 1961, vol. 65, pp. 581-594.
40.
Zurück zum Zitat [40] P.W. Voorhees and M.E. Glicksman, Acta Metall., 1984, vol. 32, pp. 2001-2011.CrossRef [40] P.W. Voorhees and M.E. Glicksman, Acta Metall., 1984, vol. 32, pp. 2001-2011.CrossRef
41.
Zurück zum Zitat [41] P.W. Voorhees and M.E. Glicksman, Acta Metall., 1984, vol. 32, pp. 2013-2030.CrossRef [41] P.W. Voorhees and M.E. Glicksman, Acta Metall., 1984, vol. 32, pp. 2013-2030.CrossRef
42.
43.
Zurück zum Zitat [43] O. Hunderi and N. Ryum, Scand. J. Metall., 1963, vol. 10, pp. 238-240. [43] O. Hunderi and N. Ryum, Scand. J. Metall., 1963, vol. 10, pp. 238-240.
44.
45.
Zurück zum Zitat [45] A.D. Brailsford and P. Wynblatt, Acta Metall., 1979, vol. 27, pp. 489-497.CrossRef [45] A.D. Brailsford and P. Wynblatt, Acta Metall., 1979, vol. 27, pp. 489-497.CrossRef
46.
Zurück zum Zitat [46] C.K.L. Davies, P. Nash and R.N. Stevens, Acta Metall., 1980, vol. 28, pp. 179-189.CrossRef [46] C.K.L. Davies, P. Nash and R.N. Stevens, Acta Metall., 1980, vol. 28, pp. 179-189.CrossRef
47.
Zurück zum Zitat [47] K. Tsumuraya and Y. Miyata, Acta Metall., 1983, vol. 31, pp. 437-452.CrossRef [47] K. Tsumuraya and Y. Miyata, Acta Metall., 1983, vol. 31, pp. 437-452.CrossRef
48.
Zurück zum Zitat [48] J.A. Marqusee and J. Ross, J. Chem. Phys., 1984, vol. 80, pp. 536-543.CrossRef [48] J.A. Marqusee and J. Ross, J. Chem. Phys., 1984, vol. 80, pp. 536-543.CrossRef
50.
Zurück zum Zitat [50] Y. Enomoto, M. Tokuyama and K. Kawasaki, Acta Metall., 1986, vol. 34, pp. 2119-2128.CrossRef [50] Y. Enomoto, M. Tokuyama and K. Kawasaki, Acta Metall., 1986, vol. 34, pp. 2119-2128.CrossRef
51.
Zurück zum Zitat [51] Y. Enomoto, M. Tokuyama and K. Kawasaki, Acta Metall., 1987, vol. 35, pp. 907-913.CrossRef [51] Y. Enomoto, M. Tokuyama and K. Kawasaki, Acta Metall., 1987, vol. 35, pp. 907-913.CrossRef
52.
Zurück zum Zitat [52] Y. Enomoto, M. Tokuyama and K. Kawasaki, Acta Metall., 1987, vol. 35, pp. 915-922.CrossRef [52] Y. Enomoto, M. Tokuyama and K. Kawasaki, Acta Metall., 1987, vol. 35, pp. 915-922.CrossRef
53.
Zurück zum Zitat A.J. Ardell: Proc. Int. Conf. “Phase transformations ’87”, G.W. Lorimer, ed., The Institute of Metals, 1988. A.J. Ardell: Proc. Int. Conf. “Phase transformations ’87”, G.W. Lorimer, ed., The Institute of Metals, 1988.
54.
Zurück zum Zitat [54] S.P. Marsh and M.E. Glicksman, Acta Mater., 1996, vol. 44, pp. 3761-3771.CrossRef [54] S.P. Marsh and M.E. Glicksman, Acta Mater., 1996, vol. 44, pp. 3761-3771.CrossRef
55.
Zurück zum Zitat [55] K. Kim and P.W. Voorhees, Acta Mater., 2018, vol. 152 pp. 327-337.CrossRef [55] K. Kim and P.W. Voorhees, Acta Mater., 2018, vol. 152 pp. 327-337.CrossRef
56.
Zurück zum Zitat [56] T. Philippe and P.W. Voorhees, Acta Mater., 2013, vol. 61, pp. 4237-4244.CrossRef [56] T. Philippe and P.W. Voorhees, Acta Mater., 2013, vol. 61, pp. 4237-4244.CrossRef
58.
59.
Zurück zum Zitat [59] R.N. Stevens and C.K.L. Davies, Scripta Mater., 2002, vol. 46 pp. 19-23.CrossRef [59] R.N. Stevens and C.K.L. Davies, Scripta Mater., 2002, vol. 46 pp. 19-23.CrossRef
60.
Zurück zum Zitat [60] R.D. Vengrenovich, Yu.V. Gudyma and S.V. Yarema, Scripta Mater., 2002, vol. 46, pp. 363-367.CrossRef [60] R.D. Vengrenovich, Yu.V. Gudyma and S.V. Yarema, Scripta Mater., 2002, vol. 46, pp. 363-367.CrossRef
61.
62.
63.
Zurück zum Zitat [63] P.W. Voorhees, Ann. Rev. Mater. Sci., 1992, vol. 22, pp. 197-215.CrossRef [63] P.W. Voorhees, Ann. Rev. Mater. Sci., 1992, vol. 22, pp. 197-215.CrossRef
64.
65.
Zurück zum Zitat [65] J. Svoboda and F.D. Fischer, Acta Mater., 2014, vol. 79, pp. 304-314.CrossRef [65] J. Svoboda and F.D. Fischer, Acta Mater., 2014, vol. 79, pp. 304-314.CrossRef
66.
Zurück zum Zitat [66] D.J. Rowenhorst, J.P. Kuang, K. Thornton and P.W. Voorhees, Acta Mater., 2006, vol. 54, pp. 2027-2039.CrossRef [66] D.J. Rowenhorst, J.P. Kuang, K. Thornton and P.W. Voorhees, Acta Mater., 2006, vol. 54, pp. 2027-2039.CrossRef
67.
Zurück zum Zitat H. Hougardy and Y. Lan: Modelling of Particle Growth and Application to the Carbide Evolution in Special Steels for High Temperature Service, Final Report EUR 18633 EN, Luxembourg, 1999. H. Hougardy and Y. Lan: Modelling of Particle Growth and Application to the Carbide Evolution in Special Steels for High Temperature Service, Final Report EUR 18633 EN, Luxembourg, 1999.
68.
Zurück zum Zitat [68] T. Werz, M. Baumann, U. Wolfram and C.E. Krill III, Mater. Characterization, 2014, vol. 90, pp. 185-195.CrossRef [68] T. Werz, M. Baumann, U. Wolfram and C.E. Krill III, Mater. Characterization, 2014, vol. 90, pp. 185-195.CrossRef
71.
Zurück zum Zitat [71] J. Zhang, Y. Zhang, W. Ludwig, D. Rowenhorst and H.F. Poulsen, Acta Mater., 2018, vol. 156, pp. 76-85.CrossRef [71] J. Zhang, Y. Zhang, W. Ludwig, D. Rowenhorst and H.F. Poulsen, Acta Mater., 2018, vol. 156, pp. 76-85.CrossRef
72.
Zurück zum Zitat [72] S.K. Kurtz and F.M.A. Carpay, J. Appl. Phys., 1980, vol. 51, pp. 5725-5744.CrossRef [72] S.K. Kurtz and F.M.A. Carpay, J. Appl. Phys., 1980, vol. 51, pp. 5725-5744.CrossRef
73.
Zurück zum Zitat [73] S.K. Kurtz and F.M.A. Carpay, J. Appl. Phys., 1980, vol. 51, pp. 5745-5754.CrossRef [73] S.K. Kurtz and F.M.A. Carpay, J. Appl. Phys., 1980, vol. 51, pp. 5745-5754.CrossRef
74.
75.
Zurück zum Zitat [75] J. Svoboda and F.D. Fischer, Acta Mater., 2007, vol. 55, pp. 4467-4474.CrossRef [75] J. Svoboda and F.D. Fischer, Acta Mater., 2007, vol. 55, pp. 4467-4474.CrossRef
76.
Zurück zum Zitat S. Protasova and V. Sursaeva: in Proceedings of the 1st Joint International Conference on Recrystallization and Grain Growth, G. Gottstein and D.A. Molodov, eds., Springer, Berlin, 2001, pp. 557–62. S. Protasova and V. Sursaeva: in Proceedings of the 1st Joint International Conference on Recrystallization and Grain Growth, G. Gottstein and D.A. Molodov, eds., Springer, Berlin, 2001, pp. 557–62.
77.
Zurück zum Zitat [77] J. Jeppsson, J. Ågren and M. Hillert, Acta Mater., 2008, vol. 56, pp. 5188-5201.CrossRef [77] J. Jeppsson, J. Ågren and M. Hillert, Acta Mater., 2008, vol. 56, pp. 5188-5201.CrossRef
78.
Zurück zum Zitat [78] K.G. Wang, M.E. Glicksman and C. Lou, Phys. Rev. E, 2006, vol. 73, pp. 061502.CrossRef [78] K.G. Wang, M.E. Glicksman and C. Lou, Phys. Rev. E, 2006, vol. 73, pp. 061502.CrossRef
79.
80.
Zurück zum Zitat [80] V.A. Snyder, J. Alkemper and P.W. Voorhees, Acta Mater., 2000, vol. 48, pp. 2689-2701.CrossRef [80] V.A. Snyder, J. Alkemper and P.W. Voorhees, Acta Mater., 2000, vol. 48, pp. 2689-2701.CrossRef
81.
Zurück zum Zitat [81] V.A. Snyder, J. Alkemper and P.W. Voorhees, Acta Mater., 2001, vol. 49, pp. 699-709.CrossRef [81] V.A. Snyder, J. Alkemper and P.W. Voorhees, Acta Mater., 2001, vol. 49, pp. 699-709.CrossRef
82.
Zurück zum Zitat [82] Y. Tomokiyo, K. Yahiro, S. Matsumura, K. Oki and T. Guchi, Effect of spatial correlations of particles on Ostwald ripening, in S. Komura, H. Furukawa (eds.) Dynamics of ordering processes in condensed matter, Springer, Boston MA (1988). [82] Y. Tomokiyo, K. Yahiro, S. Matsumura, K. Oki and T. Guchi, Effect of spatial correlations of particles on Ostwald ripening, in S. Komura, H. Furukawa (eds.) Dynamics of ordering processes in condensed matter, Springer, Boston MA (1988).
83.
Zurück zum Zitat [83] O. Hunderi, J. Friis, K. Marthinsen and N. Ryum, Scripta Mater., 2006, vol. 55, pp. 939-942.CrossRef [83] O. Hunderi, J. Friis, K. Marthinsen and N. Ryum, Scripta Mater., 2006, vol. 55, pp. 939-942.CrossRef
84.
85.
Zurück zum Zitat [85] F.D. Fischer, J. Svoboda, E. Gamsjäger and E.R. Oberaigner, Acta Mater., 2008, vol. 56, pp. 5395-5400.CrossRef [85] F.D. Fischer, J. Svoboda, E. Gamsjäger and E.R. Oberaigner, Acta Mater., 2008, vol. 56, pp. 5395-5400.CrossRef
86.
Zurück zum Zitat [86] D.E. Kile, D.D. Eberl, A.R. Hoch and M.M. Reddy, Geochim. Cosmochim. Acta, 2000, vol. 64, pp. 2937-2950.CrossRef [86] D.E. Kile, D.D. Eberl, A.R. Hoch and M.M. Reddy, Geochim. Cosmochim. Acta, 2000, vol. 64, pp. 2937-2950.CrossRef
Metadaten
Titel
Reinterpretation of the Mean Field Hypothesis in Analytical Models of Ostwald Ripening and Grain Growth
verfasst von
Paolo Emilio Di Nunzio
Publikationsdatum
20.02.2019
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions A / Ausgabe 5/2019
Print ISSN: 1073-5623
Elektronische ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-019-05155-7

Weitere Artikel der Ausgabe 5/2019

Metallurgical and Materials Transactions A 5/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.