Skip to main content
Erschienen in:

26.06.2024 | Original Paper

Reliability modeling of different wave energy conversion technologies

verfasst von: Amir Ghaedi, Reza Sedaghati, Mehrdad Mahmoudian

Erschienen in: Electrical Engineering | Ausgabe 1/2025

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Wave as a clean, renewable and sustainable resource is used to produce electricity through different wave energy conversion systems. So far, many devices have been introduced for extracting the wave power and converting it to the electric power. Among different wave energy conversion systems, Pelamis, Wave Dragon, Oyster, Sea wave Slot-coned Generator and Buoy are developed, and commercial scale of these wave converters with large capacity is constructed in the world. The variability of output power of wave generator is main challenge of these renewable resources that must be addressed to integrate the large-scale wave generators in the power system. The assembled elements and also the principle of electric power production of various wave generators are different. For this purpose, in the current research, reliability modeling of different wave energy conversion devices is performed. The suggested reliability model considers both the hazard of assembled elements of the wave converters and change of output power of them. Because of wide change in wave height and wave period, the output of wave generators changes widely. To achieve a several-state reliability model of these wave generators, number of power states in the reliability presentation of them should be decreases. In the current study, the XB index that considers distance among decreased and initial states in numerator and minimum distance of two clusters in denominator is considered to determine optimal number of clusters in reliability presentation of wave generators. Then, fuzzy k-means clustering methodology is utilized to determine probability of these reduced power states. The suggested reliability model of different wave energy converters is used for studying adequacy of electric network with the presence of these production units. Based on the numerical outcomes related to adequacy analysis of RBTS and IEEE-RTS as two reliability test systems, impact of different wave generators on reliability quantities of electric network is investigated.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Kempener R, Neumann F (2014) Wave energy technology brief. International Renewable Energy Agency (IRENA) Kempener R, Neumann F (2014) Wave energy technology brief. International Renewable Energy Agency (IRENA)
2.
Zurück zum Zitat Cahill, B., & Lewis, T. (2011, September). Wave energy resource characterization and the evaluation of potential Wave Farm sites. In: OCEANS'11 MTS/IEEE KONA, IEEE, pp 1–10 Cahill, B., & Lewis, T. (2011, September). Wave energy resource characterization and the evaluation of potential Wave Farm sites. In: OCEANS'11 MTS/IEEE KONA, IEEE, pp 1–10
3.
Zurück zum Zitat Pitt E (2009) Assessment of performance of wave energy conversion systems. Department of energy & climate change Pitt E (2009) Assessment of performance of wave energy conversion systems. Department of energy & climate change
4.
Zurück zum Zitat Benassai G, Dattero M, Maffucci A (2009) Wave energy conversion systems: optimal localization procedure. WIT Trans Ecol Environ 126:129–138CrossRef Benassai G, Dattero M, Maffucci A (2009) Wave energy conversion systems: optimal localization procedure. WIT Trans Ecol Environ 126:129–138CrossRef
5.
Zurück zum Zitat Ozkop E, Altas IH (2017) Control, power and electrical components in wave energy conversion systems: a review of the technologies. Renew Sustain Energy Rev 67:106–115CrossRefMATH Ozkop E, Altas IH (2017) Control, power and electrical components in wave energy conversion systems: a review of the technologies. Renew Sustain Energy Rev 67:106–115CrossRefMATH
6.
Zurück zum Zitat Rodrigues L (2008) Wave power conversion systems for electrical energy production. Nova Univ Lisb 1:601MATH Rodrigues L (2008) Wave power conversion systems for electrical energy production. Nova Univ Lisb 1:601MATH
7.
Zurück zum Zitat Muetze A, Vining JG (2006) Ocean wave energy conversion-a survey. In: Conference record of the 2006 IEEE industry applications conference forty-first IAS annual meeting, IEEE, vol 3, pp 1410–1417 Muetze A, Vining JG (2006) Ocean wave energy conversion-a survey. In: Conference record of the 2006 IEEE industry applications conference forty-first IAS annual meeting, IEEE, vol 3, pp 1410–1417
8.
Zurück zum Zitat Vicinanza D, Lauro ED, Contestabile P, Gisonni C, Lara JL, Losada IJ (2019). Review of innovative harbor breakwaters for wave-energy conversion, Doctoral dissertation, American Society of Civil Engineers Vicinanza D, Lauro ED, Contestabile P, Gisonni C, Lara JL, Losada IJ (2019). Review of innovative harbor breakwaters for wave-energy conversion, Doctoral dissertation, American Society of Civil Engineers
9.
Zurück zum Zitat Manasseh R, Sannasiraj SA, McInnes KL, Sundar V, Jalihal P (2017) Integration of wave energy and other marine renewable energy sources with the needs of coastal societies. Int J Ocean Clim Syst 8(1):19–36CrossRefMATH Manasseh R, Sannasiraj SA, McInnes KL, Sundar V, Jalihal P (2017) Integration of wave energy and other marine renewable energy sources with the needs of coastal societies. Int J Ocean Clim Syst 8(1):19–36CrossRefMATH
11.
Zurück zum Zitat Pontes T (2002) Mathematical description of Waves and Wave energy. INETI Department of Renewable Energies, Lisbon Pontes T (2002) Mathematical description of Waves and Wave energy. INETI Department of Renewable Energies, Lisbon
12.
Zurück zum Zitat Clément A, McCullen P, Falcão A, Fiorentino A, Gardner F, Hammarlund K, Pontes MT (2002) Wave energy in Europe: current status and perspectives. Renew Sustain Energy Rev 6(5):405–431CrossRef Clément A, McCullen P, Falcão A, Fiorentino A, Gardner F, Hammarlund K, Pontes MT (2002) Wave energy in Europe: current status and perspectives. Renew Sustain Energy Rev 6(5):405–431CrossRef
13.
Zurück zum Zitat Gobato R, Alekssander G, Desire F, Gobato F (2015) Study Pelamis system to capture energy of ocean wave. arXiv preprint arXiv:1508.01106 Gobato R, Alekssander G, Desire F, Gobato F (2015) Study Pelamis system to capture energy of ocean wave. arXiv preprint arXiv:​1508.​01106
14.
Zurück zum Zitat Ghaedi A, Gorginpour H (2020) Reliability assessment of composite power systems containing sea wave slot-coned generators. IET Renew Power Gener 14(16):3172–3180CrossRefMATH Ghaedi A, Gorginpour H (2020) Reliability assessment of composite power systems containing sea wave slot-coned generators. IET Renew Power Gener 14(16):3172–3180CrossRefMATH
15.
Zurück zum Zitat Ghaedi A, Hamed G (2021) Reliability‐based operation studies of wave energy converters using modified PJM approach. Int Trans Electr Energy Syst 31:e12928CrossRefMATH Ghaedi A, Hamed G (2021) Reliability‐based operation studies of wave energy converters using modified PJM approach. Int Trans Electr Energy Syst 31:e12928CrossRefMATH
16.
Zurück zum Zitat Poullikkas A (2014) Technology prospects of wave power systems. Electr J Energy Environ 2(1):47–69MATH Poullikkas A (2014) Technology prospects of wave power systems. Electr J Energy Environ 2(1):47–69MATH
17.
Zurück zum Zitat Ghaedi A (2023) Reliability modelling of ocean current energy conversion systems through both analytical and Monte Carlo methods. Ocean Eng 286:115457CrossRefMATH Ghaedi A (2023) Reliability modelling of ocean current energy conversion systems through both analytical and Monte Carlo methods. Ocean Eng 286:115457CrossRefMATH
18.
Zurück zum Zitat Ghaedi A et al (2014) Toward a comprehensive model of large-scale DFIG-based wind farms in adequacy assessment of power systems. IEEE Trans Sustain Energy 5(1):55–63CrossRefMATH Ghaedi A et al (2014) Toward a comprehensive model of large-scale DFIG-based wind farms in adequacy assessment of power systems. IEEE Trans Sustain Energy 5(1):55–63CrossRefMATH
19.
Zurück zum Zitat Ghaedi A et al (2014) Incorporating large photovoltaic farms in power generation system adequacy assessment. Scientia Iranica 21(3):924–934MATH Ghaedi A et al (2014) Incorporating large photovoltaic farms in power generation system adequacy assessment. Scientia Iranica 21(3):924–934MATH
21.
Zurück zum Zitat Mirzadeh M, Simab M, Ghaedi A (2019) Adequacy studies of power systems with barrage-type tidal power plants. IET Renew Power Gener 13(14):2612–2622CrossRefMATH Mirzadeh M, Simab M, Ghaedi A (2019) Adequacy studies of power systems with barrage-type tidal power plants. IET Renew Power Gener 13(14):2612–2622CrossRefMATH
22.
Zurück zum Zitat Mirzadeh M, Simab M, Ghaedi A (2020) Reliability evaluation of power systems containing tidal power plant. J Energy Manage Technol 4(2):28–38MATH Mirzadeh M, Simab M, Ghaedi A (2020) Reliability evaluation of power systems containing tidal power plant. J Energy Manage Technol 4(2):28–38MATH
23.
Zurück zum Zitat Ghaedi A, Hamed G (2021) Spinning reserve scheduling in power systems containing wind and solar generations. Electr Eng 103:1–20CrossRefMATH Ghaedi A, Hamed G (2021) Spinning reserve scheduling in power systems containing wind and solar generations. Electr Eng 103:1–20CrossRefMATH
24.
Zurück zum Zitat Mirzadeh M, Simab M, Ghaedi A (2019) Reliability Modeling of Reservoir-Based Tidal Power Plants for Determination of Spinning Reserve in Renewable Energy-based Power Systems. Electric Power Compon Syst 47(16–17):1534–1550CrossRefMATH Mirzadeh M, Simab M, Ghaedi A (2019) Reliability Modeling of Reservoir-Based Tidal Power Plants for Determination of Spinning Reserve in Renewable Energy-based Power Systems. Electric Power Compon Syst 47(16–17):1534–1550CrossRefMATH
25.
Zurück zum Zitat Ghaedi A, Hamed G (2021) Reliability evaluation of permanent magnet synchronous generator‐based wind turbines considering wind speed variations. Wind Energy 24:1275CrossRefMATH Ghaedi A, Hamed G (2021) Reliability evaluation of permanent magnet synchronous generator‐based wind turbines considering wind speed variations. Wind Energy 24:1275CrossRefMATH
26.
Zurück zum Zitat Ghaedi A, Mirzadeh M (2020) The impact of tidal height variation on the reliability of barrage-type tidal power plants. Int Trans Electr Energy Syst 30(9):e12477CrossRefMATH Ghaedi A, Mirzadeh M (2020) The impact of tidal height variation on the reliability of barrage-type tidal power plants. Int Trans Electr Energy Syst 30(9):e12477CrossRefMATH
27.
Zurück zum Zitat Power Transformer—Part7: Loading Guide for Oil-Immersed Power Transformers. (2005) IEC Std. 60076–7 Power Transformer—Part7: Loading Guide for Oil-Immersed Power Transformers. (2005) IEC Std. 60076–7
28.
Zurück zum Zitat El-Faraskoury A, Ghoneim Sh, Alaboudy A et al (2015) Practical and theoretical investigation of current carrying capacity (Ampacity) of underground cables. Adv Electr Eng Syst (AEES) 1(3):163–169 El-Faraskoury A, Ghoneim Sh, Alaboudy A et al (2015) Practical and theoretical investigation of current carrying capacity (Ampacity) of underground cables. Adv Electr Eng Syst (AEES) 1(3):163–169
29.
Zurück zum Zitat Billinton R, Kumar S, Chowdhury N et al (1989) A Reliability Test System for Educational Purposes-Basic Data. Power Eng Rev 9(8):67–68CrossRefMATH Billinton R, Kumar S, Chowdhury N et al (1989) A Reliability Test System for Educational Purposes-Basic Data. Power Eng Rev 9(8):67–68CrossRefMATH
30.
Zurück zum Zitat Billinton R, Li W (1994) Reliability assessment of electric power system using Monte Carlo. Plenum Press, New YorkCrossRefMATH Billinton R, Li W (1994) Reliability assessment of electric power system using Monte Carlo. Plenum Press, New YorkCrossRefMATH
Metadaten
Titel
Reliability modeling of different wave energy conversion technologies
verfasst von
Amir Ghaedi
Reza Sedaghati
Mehrdad Mahmoudian
Publikationsdatum
26.06.2024
Verlag
Springer Berlin Heidelberg
Erschienen in
Electrical Engineering / Ausgabe 1/2025
Print ISSN: 0948-7921
Elektronische ISSN: 1432-0487
DOI
https://doi.org/10.1007/s00202-024-02499-1