Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

02.11.2016 | Industrial and Commercial Application | Ausgabe 3/2017

Pattern Analysis and Applications 3/2017

Reliable prediction of anti-diabetic drug failure using a reject option

Zeitschrift:
Pattern Analysis and Applications > Ausgabe 3/2017
Autoren:
Seokho Kang, Sungzoon Cho, Su-jin Rhee, Kyung-Sang Yu

Abstract

The medical care for patients with type 2 diabetes generally involves ingestion of oral hypoglycemic agents in order to lower their glucose level. When predicting the result of the medication using a classification approach, high prediction accuracy of the classifier is essential because of high misclassification costs. The application of a reject option to this approach supports more accurate prediction, allowing for human experts to examine when the classifier is unreliable to predict. In this paper, we propose a reject option framework based on heterogeneous ensemble learning through a two-phase fusion. The first phase is to calculate confidence scores, which are used to determine whether to predict, and the second phase is to derive final prediction results by fusing the outputs from multiple heterogeneous classifiers. We confirm the effectiveness of the proposed method to the anti-diabetic drug failure prediction problem through experiments on actual electronic medical records data of type 2 diabetes. The proposed method yields a better trade-off between accuracy and rejection than other reject options with statistical significance. A lower prediction error is obtained for the same degree of rejection. We obtained desirable accuracy for the anti-diabetic drug failure problem by applying the proposed reject option, which allows using the classification approach in practice. The accurate prediction of drug failure at the moment of prescription can assist clinical decisions for patients. In addition, in-depth analysis can be considered for those prescriptions that are predicted as failure or rejected.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe​​​​​​​




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 3/2017

Pattern Analysis and Applications 3/2017 Zur Ausgabe

Premium Partner

    Bildnachweise