2013 | OriginalPaper | Buchkapitel
Representation of Propositional Data for Collaborative Filtering
verfasst von : Andrzej Szwabe, Pawel Misiorek, Michal Ciesielczyk
Erschienen in: Distributed Computing and Artificial Intelligence
Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.
Wählen Sie Textabschnitte aus um mit Künstlicher Intelligenz passenden Patente zu finden. powered by
Markieren Sie Textabschnitte, um KI-gestützt weitere passende Inhalte zu finden. powered by (Link öffnet in neuem Fenster)
State-of-the-art approaches to collaborative filtering are based on the use of an input matrix that represents each user profile as a vector in a space of items and, analogically, each item as a vector in a space of users. When the behavioral input data have the form of (
userX, likes, itemY
) and (
userX, dislikes, itemY
) triples, one has to propose a bi-relational data representation that is more flexible than the ordinary user-item ratings matrix. We propose to use a matrix, in which columns represent RDF-like triples and rows represent users, items, and relations. We show that the proposed behavioral data representation based on the use of an element-fact matrix, combined with reflective matrix processing, enables outperforming state-of-the- art collaborative filtering methods based on the use of a ’standard’ user-item matrix.