Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

04.05.2016 | RESEARCH PAPER | Ausgabe 3/2016

Structural and Multidisciplinary Optimization 3/2016

Representative surrogate problems as test functions for expensive simulators in multidisciplinary design optimization of vehicle structures

Zeitschrift:
Structural and Multidisciplinary Optimization > Ausgabe 3/2016
Autoren:
Ramses Sala, Niccolò Baldanzini, Marco Pierini

Abstract

A large variety of algorithms for multidisciplinary optimization is available, but for various industrial problem types that involve expensive function evaluations, there is still few guidance available to select efficient optimization algorithms. This is also the case for multidisciplinary vehicle design optimization problems involving, e.g., weight, crashworthiness, and vibrational comfort responses. In this paper, an approach for the development of Representative Surrogate Problems (RSPs) as synthetic test functions for a relatively complex industrial problem is presented. The work builds on existing sensitivity analysis and surrogate data generation methods to establish a novel approach to generate surrogate function sets, which are accessible (i.e. not resource demanding) and aim to generate statistically representative instances of specific classes of industrial problems. The approach is demonstrated through the construction of RSPs for multidisciplinary optimization problems that occur in the context of structural car body design. As a “proof of concept” the RSP approach is applied for the selection of suitable optimization algorithms, for several problem formulations and for a meta-optimization (i.e. an optimization of the optimization algorithm parameters) to increase optimization efficiency. The potential of the approach is demonstrated by comparing the efficiency of several optimization algorithms on an RSP and an independent simulation-based vehicle model. The results corroborate the potential of the proposed approach and significant performance gains in optimization efficiency are achieved. Although the approach is developed for the particular application presented, the approach is described in a general way, to encourage readers to use the gist of the concept.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit dem Kombi-Abo erhalten Sie vollen Zugriff auf über 1,8 Mio. Dokumente aus mehr als 61.000 Fachbüchern und rund 500 Fachzeitschriften aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit dem Technik-Abo erhalten Sie Zugriff auf über 1 Mio. Dokumente aus mehr als 40.000 Fachbüchern und 300 Fachzeitschriften aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe

Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 3/2016

Structural and Multidisciplinary Optimization 3/2016Zur Ausgabe

Premium Partner

in-adhesivesMKVSNeuer Inhalt

BranchenIndex Online

Die B2B-Firmensuche für Industrie und Wirtschaft: Kostenfrei in Firmenprofilen nach Lieferanten, Herstellern, Dienstleistern und Händlern recherchieren.

Whitepaper

- ANZEIGE -

Künstliche Intelligenz und die Potenziale des maschinellen Lernens für die Industrie

Maschinelles Lernen ist die Schlüsseltechnologie für intelligente Systeme. Besonders erfolgreich ist in den letzten Jahren das Lernen tiefer Modelle aus großen Datenmengen – „Deep Learning“. Mit dem Internet der Dinge rollt die nächste, noch größere Datenwelle auf uns zu. Hier bietet die Künstliche Intelligenz besondere Chancen für die deutsche Industrie, wenn sie schnell genug in die Digitalisierung einsteigt.
Jetzt gratis downloaden!

Marktübersichten

Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen. 

Bildnachweise