Skip to main content

17.03.2025 | Vision and Sensors

Research on Adaptive Driving Beam System Control Strategy Based on Multimodal Perception and Data Fusion

verfasst von: Shidian Ma, Qingxin Ge, Haobin Jiang, Mu Han, Youguo He, Aoxue Li

Erschienen in: International Journal of Automotive Technology

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The correct use of high beams is essential when driving at night, and improper use can lead to glare or even temporary blindness for oncoming drivers, increasing the risk of accidents. Although adaptive driving beam system can mitigate this issue, shortcomings remain in environmental perception and beam control accuracy. To address these deficiencies, this paper proposes the following improvements. First, we propose an improved Yolov5s-CBAM-Pruning visual detection model and a two-level fusion method based on camera and millimeter-wave radar for “target-decision” fusion. By adding the CBAM attention module into the Yolov5s backbone network and applying channel pruning, the model’s detection performance is enhanced. The Global Nearest Neighbor algorithm enables target-level fusion between the camera and radar, followed by decision-level fusion for unmatched targets. Second, we proposes a light attenuation model based on the “distance-angle” framework, achieving precise beam control by turning off light sources that exceed the glare threshold. The experiments show that the improved Yolov5s-CBAM-Pruning model achieves a 3.2% increase in mAP and a 34.81% reduction in complexity compared to Yolov5s. The two-level fusion detection accuracy improves by 10.4% compared to single-vision methods. An adaptive LED shutdown control was implemented with Arduino UNO, validating the strategy’s effectiveness.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

ATZelectronics worldwide

ATZlectronics worldwide is up-to-speed on new trends and developments in automotive electronics on a scientific level with a high depth of information. 

Order your 30-days-trial for free and without any commitment.

Weitere Produktempfehlungen anzeigen
Literatur
Zurück zum Zitat Bullough, J. D. (2014). Adaptive high beam systems: Visual performance and safety effects. SAE Technical Paper 0431. Bullough, J. D. (2014). Adaptive high beam systems: Visual performance and safety effects. SAE Technical Paper 0431.
Zurück zum Zitat Chen, Y., Ahmadi, A., & Ahamed, M. J. (2021). Optimizing Non-Glare Zone Width of Adaptive Driving Beam (ADB) Using Fuzzy Logic Control. Applied Sciences, 11(19), 8840.CrossRefMATH Chen, Y., Ahmadi, A., & Ahamed, M. J. (2021). Optimizing Non-Glare Zone Width of Adaptive Driving Beam (ADB) Using Fuzzy Logic Control. Applied Sciences, 11(19), 8840.CrossRefMATH
Zurück zum Zitat Cui, F., Zhang, Q., Wu, J., Song, Y., Xie, Z., Song, C., & Xu, Z. (2023). Online multipedestrian tracking based on fused detections of millimeter wave radar and vision. IEEE Sensors Journal, 23(14), 15702–15712.CrossRef Cui, F., Zhang, Q., Wu, J., Song, Y., Xie, Z., Song, C., & Xu, Z. (2023). Online multipedestrian tracking based on fused detections of millimeter wave radar and vision. IEEE Sensors Journal, 23(14), 15702–15712.CrossRef
Zurück zum Zitat Deng, Y., Guan, Z., Zhang, H., Zhao, W., Wu, B., Wang, X., & Lu, G. (2021). An adaptive driving beam system based on the angle information of the opposite vehicle. IEEE 5th Adv. Inf. Technol. Electron. Autom. Control Conf, 5, 1134–1137.MATH Deng, Y., Guan, Z., Zhang, H., Zhao, W., Wu, B., Wang, X., & Lu, G. (2021). An adaptive driving beam system based on the angle information of the opposite vehicle. IEEE 5th Adv. Inf. Technol. Electron. Autom. Control Conf, 5, 1134–1137.MATH
Zurück zum Zitat Du, P., Wang, X., Zheng, Q., Wang, X., Li, W., & Xu, X. (2024). Glare countering and exploiting via dual stream network for nighttime vehicle detection. Vis. Comput 1–14. Du, P., Wang, X., Zheng, Q., Wang, X., Li, W., & Xu, X. (2024). Glare countering and exploiting via dual stream network for nighttime vehicle detection. Vis. Comput 1–14.
Zurück zum Zitat Ewecker, L., Asan, E., Ohnemus, L., & Saralajew, S. (2023). Provident vehicle detection at night for advanced driver assistance systems. Autonomous Robots, 47(3), 313–335.CrossRef Ewecker, L., Asan, E., Ohnemus, L., & Saralajew, S. (2023). Provident vehicle detection at night for advanced driver assistance systems. Autonomous Robots, 47(3), 313–335.CrossRef
Zurück zum Zitat Feng, J., Chen, J., Liu, L., Cao, X., Zhang, X., Jiao, L., & Yu, T. (2019). CNN-based multilayer spatial–spectral feature fusion and sample augmentation with local and nonlocal constraints for hyperspectral image classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens 12, 4, 1299–1313. Feng, J., Chen, J., Liu, L., Cao, X., Zhang, X., Jiao, L., & Yu, T. (2019). CNN-based multilayer spatial–spectral feature fusion and sample augmentation with local and nonlocal constraints for hyperspectral image classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens 12, 4, 1299–1313.
Zurück zum Zitat Feng, Y., Luo, E., Lu, H., & Zhai, S. (2024). Cross-modality feature fusion for night pedestrian detection. Frontiers of Physics, 12, 1356248.CrossRefMATH Feng, Y., Luo, E., Lu, H., & Zhai, S. (2024). Cross-modality feature fusion for night pedestrian detection. Frontiers of Physics, 12, 1356248.CrossRefMATH
Zurück zum Zitat Gao, X., Luo, Y., Alansari, A., & Sun, Y. (2024). MMW-Carry: Enhancing Carry Object Detection through Millimeter-Wave Radar-Camera Fusion. IEEE Sensors Journal, 24(9), 15091–15100.CrossRef Gao, X., Luo, Y., Alansari, A., & Sun, Y. (2024). MMW-Carry: Enhancing Carry Object Detection through Millimeter-Wave Radar-Camera Fusion. IEEE Sensors Journal, 24(9), 15091–15100.CrossRef
Zurück zum Zitat Hu, J., Guo, Y., Wang, R., Ma, S., & Yu, A. (2022). Study on the influence of opposing glare from vehicle high-beam headlights based on drivers’ visual requirements. International Journal of Environmental Research and Public Health, 19(5), 2766.CrossRefMATH Hu, J., Guo, Y., Wang, R., Ma, S., & Yu, A. (2022). Study on the influence of opposing glare from vehicle high-beam headlights based on drivers’ visual requirements. International Journal of Environmental Research and Public Health, 19(5), 2766.CrossRefMATH
Zurück zum Zitat Hwang, A. D., Tuccar-Burak, M., Goldstein, R., & Peli, E. (2018). Impact of oncoming headlight glare with cataracts: A pilot study. Frontiers in Psychology, 9, 164.CrossRef Hwang, A. D., Tuccar-Burak, M., Goldstein, R., & Peli, E. (2018). Impact of oncoming headlight glare with cataracts: A pilot study. Frontiers in Psychology, 9, 164.CrossRef
Zurück zum Zitat Kimlin, J. A., Black, A. A., & Wood, J. M. (2017). Nighttime driving in older adults: Effects of glare and association with mesopic visual function. Invest. Ophthalmol. Visual Sci, 58(5), 2796–2803.CrossRef Kimlin, J. A., Black, A. A., & Wood, J. M. (2017). Nighttime driving in older adults: Effects of glare and association with mesopic visual function. Invest. Ophthalmol. Visual Sci, 58(5), 2796–2803.CrossRef
Zurück zum Zitat Lian, X. (2018). Research on automotive adaptive driving beam system. Master's thesis, Shanghai Jiao Tong University, China. Lian, X. (2018). Research on automotive adaptive driving beam system. Master's thesis, Shanghai Jiao Tong University, China.
Zurück zum Zitat Liu, Y. (2015). Correct use of high beams at night .Traffic and Transportation 31, 6, 78. Liu, Y. (2015). Correct use of high beams at night .Traffic and Transportation 31, 6, 78.
Zurück zum Zitat Liu, Z., Li, J., Shen, Z., Huang, G., Yan, S., & Zhang, C. (2017). Learning efficient convolutional networks through network slimming. In Proc. IEEE Int. Conf. on Computer Vision. (ICCV) 2736–2744. Liu, Z., Li, J., Shen, Z., Huang, G., Yan, S., & Zhang, C. (2017). Learning efficient convolutional networks through network slimming. In Proc. IEEE Int. Conf. on Computer Vision. (ICCV) 2736–2744.
Zurück zum Zitat Liu, Y., & Liu, Y. (2021). A data fusion model for millimeter-wave radar and vision sensor in advanced driving assistance system. International Journal of Automotive Technology, 22(6), 1695–1709.CrossRefMATH Liu, Y., & Liu, Y. (2021). A data fusion model for millimeter-wave radar and vision sensor in advanced driving assistance system. International Journal of Automotive Technology, 22(6), 1695–1709.CrossRefMATH
Zurück zum Zitat Liu, Z., Cai, Y., Wang, H., Chen, L., Gao, H., Jia, Y., & Li, Y. (2021). Robust target recognition and tracking of self-driving cars with radar and camera information fusion under severe weather conditions. IEEE Transactions on Intelligent Transportation Systems, 23(7), 6640–6653.CrossRef Liu, Z., Cai, Y., Wang, H., Chen, L., Gao, H., Jia, Y., & Li, Y. (2021). Robust target recognition and tracking of self-driving cars with radar and camera information fusion under severe weather conditions. IEEE Transactions on Intelligent Transportation Systems, 23(7), 6640–6653.CrossRef
Zurück zum Zitat Ma, J., Huang, S., Jin, D., Wang, X., Li, L., & Guo, Y. (2024). LA-YOLO: An effective detection model for multi-UAV under low altitude background. Measurement Science & Technology, 35(5), 055401.CrossRefMATH Ma, J., Huang, S., Jin, D., Wang, X., Li, L., & Guo, Y. (2024). LA-YOLO: An effective detection model for multi-UAV under low altitude background. Measurement Science & Technology, 35(5), 055401.CrossRefMATH
Zurück zum Zitat Sengupta, A., Yoshizawa, A., & Cao, S. (2022). Automatic radar-camera dataset generation for sensor-fusion applications. IEEE Robot. Autom. Lett, 7(2), 2875–2882.CrossRefMATH Sengupta, A., Yoshizawa, A., & Cao, S. (2022). Automatic radar-camera dataset generation for sensor-fusion applications. IEEE Robot. Autom. Lett, 7(2), 2875–2882.CrossRefMATH
Zurück zum Zitat Singh, S., Sharma, U., Kasana, I., & Sadhu, S. (2023). Design and implementation of an adaptive headlight system model for enhanced night-time driving safety. Proc. Inst. Mech. Eng. Part D J. Automob. Eng 09544070231194744. Singh, S., Sharma, U., Kasana, I., & Sadhu, S. (2023). Design and implementation of an adaptive headlight system model for enhanced night-time driving safety. Proc. Inst. Mech. Eng. Part D J. Automob. Eng 09544070231194744.
Zurück zum Zitat Tan, X., Liu, S., Zhu, Q., & FAN, Q., & Wang, C. (2019). Matrix LED high-beam intelligent assistant control system. J. Comp. Appl, 39(6), 1855–1862.MATH Tan, X., Liu, S., Zhu, Q., & FAN, Q., & Wang, C. (2019). Matrix LED high-beam intelligent assistant control system. J. Comp. Appl, 39(6), 1855–1862.MATH
Zurück zum Zitat Wang, Y., & Chen, Q. (2020). Case study of road rage incidents resulting from the illegal use of high beams. Transp. Res. Interdiscip. Perspect, 7, 100–184.MATH Wang, Y., & Chen, Q. (2020). Case study of road rage incidents resulting from the illegal use of high beams. Transp. Res. Interdiscip. Perspect, 7, 100–184.MATH
Zurück zum Zitat Wei, Z., Zhang, F., Chang, S., Liu, Y., Wu, H., & Feng, Z. (2022). Mmwave radar and vision fusion for object detection in autonomous driving: A review. Sensors, 22(7), 2542.CrossRefMATH Wei, Z., Zhang, F., Chang, S., Liu, Y., Wu, H., & Feng, Z. (2022). Mmwave radar and vision fusion for object detection in autonomous driving: A review. Sensors, 22(7), 2542.CrossRefMATH
Zurück zum Zitat Woo, S., Park, J., Lee, J. Y., & Kweon, I. S. (2018). Cbam: Convolutional block attention module. In Proc. of the Eur. Conf. on Computer Vision (ECCV) 3–19. Woo, S., Park, J., Lee, J. Y., & Kweon, I. S. (2018). Cbam: Convolutional block attention module. In Proc. of the Eur. Conf. on Computer Vision (ECCV) 3–19.
Zurück zum Zitat Wu, Y. Q., Hua, J. F., Chen, Y., Liu, M. H., & Liu, C. Y. (2018). Difficulties and countermeasures for managing improper use of high beams in motor vehicles. Public Safety in China (Academic Edition), 1, 78–81.MATH Wu, Y. Q., Hua, J. F., Chen, Y., Liu, M. H., & Liu, C. Y. (2018). Difficulties and countermeasures for managing improper use of high beams in motor vehicles. Public Safety in China (Academic Edition), 1, 78–81.MATH
Zurück zum Zitat Xu, Y., Chu, K., & Zhang, J. (2023). Nighttime Vehicle Detection Algorithm Based on Improved Faster-RCNN. IEEE Access, 12, 19299–19306.CrossRefMATH Xu, Y., Chu, K., & Zhang, J. (2023). Nighttime Vehicle Detection Algorithm Based on Improved Faster-RCNN. IEEE Access, 12, 19299–19306.CrossRefMATH
Zurück zum Zitat Xue, T., Zhang, Z., Ma, W., Li, Y., Yang, A., & Ji, T. (2022). Nighttime pedestrian and vehicle detection based on a fast saliency and multifeature fusion algorithm for infrared images. IEEE Transactions on Intelligent Transportation Systems, 23(9), 16741–16751.CrossRef Xue, T., Zhang, Z., Ma, W., Li, Y., Yang, A., & Ji, T. (2022). Nighttime pedestrian and vehicle detection based on a fast saliency and multifeature fusion algorithm for infrared images. IEEE Transactions on Intelligent Transportation Systems, 23(9), 16741–16751.CrossRef
Zurück zum Zitat Yang, Z., & Pun-Cheng, L. S. (2018). Vehicle detection in intelligent transportation systems and its applications under varying environments: A review. Image Vision Comput, 69, 143–154.CrossRefMATH Yang, Z., & Pun-Cheng, L. S. (2018). Vehicle detection in intelligent transportation systems and its applications under varying environments: A review. Image Vision Comput, 69, 143–154.CrossRefMATH
Zurück zum Zitat Yi, Z. C., Chen, Z. B., Peng, B., Li, S. X., Bai, P. F., Shui, L. L., Zhang, C. F., & Zhou, G. F. (2019). Vehicle lighting recognition system based on erosion algorithm and effective area separation in 5g vehicular communication networks. IEEE Access, 7, 111074–111083.CrossRef Yi, Z. C., Chen, Z. B., Peng, B., Li, S. X., Bai, P. F., Shui, L. L., Zhang, C. F., & Zhou, G. F. (2019). Vehicle lighting recognition system based on erosion algorithm and effective area separation in 5g vehicular communication networks. IEEE Access, 7, 111074–111083.CrossRef
Zurück zum Zitat Zhao, W., Wang, T., Tan, A., & Ren, C. (2023). Nighttime pedestrian detection based on a fusion of visual information and Millimeter-Wave radar. IEEE Access, 11, 68439–68451.CrossRef Zhao, W., Wang, T., Tan, A., & Ren, C. (2023). Nighttime pedestrian detection based on a fusion of visual information and Millimeter-Wave radar. IEEE Access, 11, 68439–68451.CrossRef
Zurück zum Zitat Zhou, S. D., Niu, C., Zhang, H., Wang, Z. Y., Sun, Z., & F. (2023). Intelligent Automobile Headlights: Recent Developments and Future Trends. J. Mec. Eng, 59(22), 380–400.CrossRefMATH Zhou, S. D., Niu, C., Zhang, H., Wang, Z. Y., Sun, Z., & F. (2023). Intelligent Automobile Headlights: Recent Developments and Future Trends. J. Mec. Eng, 59(22), 380–400.CrossRefMATH
Zurück zum Zitat Zhu, X., Lyu, S., Wang, X., & Zhao, Q. (2021). TPH-YOLOv5: Improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios. Int. Conf. Computer Vision Workshops (ICCVW) 2778–2788. Zhu, X., Lyu, S., Wang, X., & Zhao, Q. (2021). TPH-YOLOv5: Improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios. Int. Conf. Computer Vision Workshops (ICCVW) 2778–2788.
Zurück zum Zitat Zou, J., Zheng, H., & Wang, F. (2023). Real-Time target detection system for intelligent vehicles based on multi-source data fusion. Sensors, 23(4), 1823.CrossRefMATH Zou, J., Zheng, H., & Wang, F. (2023). Real-Time target detection system for intelligent vehicles based on multi-source data fusion. Sensors, 23(4), 1823.CrossRefMATH
Metadaten
Titel
Research on Adaptive Driving Beam System Control Strategy Based on Multimodal Perception and Data Fusion
verfasst von
Shidian Ma
Qingxin Ge
Haobin Jiang
Mu Han
Youguo He
Aoxue Li
Publikationsdatum
17.03.2025
Verlag
The Korean Society of Automotive Engineers
Erschienen in
International Journal of Automotive Technology
Print ISSN: 1229-9138
Elektronische ISSN: 1976-3832
DOI
https://doi.org/10.1007/s12239-025-00236-6