Skip to main content

30.12.2024 | Connected Automated Vehicles and ITS, Electric, Fuel Cell, and Hybrid Vehicle, Vehicle Dynamics and Control

Research on Adaptive Energy Management Strategy Based on Road Segment Electricity Allocation for the PHEV

verfasst von: Shaohua Wang, Yunxiang Zheng, Dehua Shi, Chun Li, Kaimei Zhang

Erschienen in: International Journal of Automotive Technology

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Fuel efficiency enhancement in plug-in hybrid electric vehicles (PHEVs) is intricately linked to battery usage efficiency and distinct driving conditions. Aiming at a multi-gear and multi-mode parallel PHEV, this study proposes an adaptive energy management strategy based on the battery electricity allocation and equivalent fuel consumption minimization strategy (ECMS) considering the characteristics of different road segments. First, different kinds of standard driving cycles are segmented and clustered into four types, on which basis a combination cycle of different types is constructed. Using dynamic programming, the effects of different average available battery state of charge (SOC) and different driving condition ratios on the optimal battery electricity allocation are studied. Second, a neural network is used to establish a prediction model for the road segment electricity allocation and the battery SOC is planned. Finally, the ECMS strategy is adopted for optimal torque allocation, whose equivalent factor is optimized by the genetic algorithm. Research results show that, when the initial SOC of the battery is 0.9 and 0.8, the proposed energy management strategy improves the vehicle fuel economy by 5.35% and 5.72%, respectively, compared with the ECMS strategy that plans the SOC trajectory based on the traveling distance.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

ATZelectronics worldwide

ATZlectronics worldwide is up-to-speed on new trends and developments in automotive electronics on a scientific level with a high depth of information. 

Order your 30-days-trial for free and without any commitment.

Weitere Produktempfehlungen anzeigen
Literatur
Zurück zum Zitat Chen, Z., Liu, Y., Zhang, Y., Lei, Z., Chen, Z., & Li, G. (2022). A neural network-based ECMS for optimized energy management of plug-in hybrid electric vehicles. Energy, 243, 122727.CrossRefMATH Chen, Z., Liu, Y., Zhang, Y., Lei, Z., Chen, Z., & Li, G. (2022). A neural network-based ECMS for optimized energy management of plug-in hybrid electric vehicles. Energy, 243, 122727.CrossRefMATH
Zurück zum Zitat Choi, K., Byun, J., Lee, S., & Jang, I. G. (2021). Adaptive equivalent consumption minimization strategy (A-ECMS) for the HEVs with a near-optimal equivalent factor considering driving conditions. IEEE Transactions on Vehicular Technology, 71(3), 2538–2549.CrossRefMATH Choi, K., Byun, J., Lee, S., & Jang, I. G. (2021). Adaptive equivalent consumption minimization strategy (A-ECMS) for the HEVs with a near-optimal equivalent factor considering driving conditions. IEEE Transactions on Vehicular Technology, 71(3), 2538–2549.CrossRefMATH
Zurück zum Zitat Dong, P., Zhao, J., Liu, X., Wu, J., Xu, X., Liu, Y., & Guo, W. (2022). Practical application of energy management strategy for hybrid electric vehicles based on intelligent and connected technologies: Development stages, challenges, and future trends. Renewable and Sustainable Energy Reviews, 170, 112947.CrossRefMATH Dong, P., Zhao, J., Liu, X., Wu, J., Xu, X., Liu, Y., & Guo, W. (2022). Practical application of energy management strategy for hybrid electric vehicles based on intelligent and connected technologies: Development stages, challenges, and future trends. Renewable and Sustainable Energy Reviews, 170, 112947.CrossRefMATH
Zurück zum Zitat Duan, B. M., Wang, Q. N., Wang, J. N., Li, X. N., & Ba, T. (2017). Calibration efficiency improvement of rule-based energy management system for a plug-in hybrid electric vehicle. International Journal of Automotive Technology, 18, 335–344.CrossRefMATH Duan, B. M., Wang, Q. N., Wang, J. N., Li, X. N., & Ba, T. (2017). Calibration efficiency improvement of rule-based energy management system for a plug-in hybrid electric vehicle. International Journal of Automotive Technology, 18, 335–344.CrossRefMATH
Zurück zum Zitat Feng, J., Han, Z., Wu, Z., & Li, M. (2022). A dynamic ECMS method considering vehicle speed pattern and minimum engine operation time for a range-extender electric vehicle (Jan. 2022). IEEE Transactions on Vehicular Technology, 71(5), 4788–4800.CrossRefMATH Feng, J., Han, Z., Wu, Z., & Li, M. (2022). A dynamic ECMS method considering vehicle speed pattern and minimum engine operation time for a range-extender electric vehicle (Jan. 2022). IEEE Transactions on Vehicular Technology, 71(5), 4788–4800.CrossRefMATH
Zurück zum Zitat Gao, Y., Yang, S., Wang, X., Li, W., Hou, Q., & Cheng, Q. (2022). Cyber hierarchy multiscale integrated energy management of intelligent hybrid electric vehicles. Automotive Innovation, 5(4), 438–452.CrossRefMATH Gao, Y., Yang, S., Wang, X., Li, W., Hou, Q., & Cheng, Q. (2022). Cyber hierarchy multiscale integrated energy management of intelligent hybrid electric vehicles. Automotive Innovation, 5(4), 438–452.CrossRefMATH
Zurück zum Zitat Girade, P., Shah, H., Kaushik, K., Patheria, A., & Xu, B. (2021). Comparative analysis of state of charge based adaptive supervisory control strategies of plug-in Hybrid Electric Vehicles. Energy, 230, 120856.CrossRef Girade, P., Shah, H., Kaushik, K., Patheria, A., & Xu, B. (2021). Comparative analysis of state of charge based adaptive supervisory control strategies of plug-in Hybrid Electric Vehicles. Energy, 230, 120856.CrossRef
Zurück zum Zitat He, Y., Chowdhury, M., Pisu, P., & Ma, Y. (2012). An energy optimization strategy for power-split drivetrain plug-in hybrid electric vehicles. Transportation Research Part c: Emerging Technologies, 22, 29–41.CrossRef He, Y., Chowdhury, M., Pisu, P., & Ma, Y. (2012). An energy optimization strategy for power-split drivetrain plug-in hybrid electric vehicles. Transportation Research Part c: Emerging Technologies, 22, 29–41.CrossRef
Zurück zum Zitat Hou, S., Yin, H., Ma, Y., & Gao, J. (2021). Energy management strategy of hybrid electric vehicle based on ecms in intelligent transportation environment. IFAC-PapersOnLine, 54(10), 157–162.CrossRefMATH Hou, S., Yin, H., Ma, Y., & Gao, J. (2021). Energy management strategy of hybrid electric vehicle based on ecms in intelligent transportation environment. IFAC-PapersOnLine, 54(10), 157–162.CrossRefMATH
Zurück zum Zitat Lei, Z., Qin, D., Hou, L., Peng, J., Liu, Y., & Chen, Z. (2020). An adaptive equivalent consumption minimization strategy for plug-in hybrid electric vehicles based on traffic information. Energy, 190, 116409.CrossRefMATH Lei, Z., Qin, D., Hou, L., Peng, J., Liu, Y., & Chen, Z. (2020). An adaptive equivalent consumption minimization strategy for plug-in hybrid electric vehicles based on traffic information. Energy, 190, 116409.CrossRefMATH
Zurück zum Zitat Li, J., He, H., Wei, Z., & Zhang, X. (2021). Hierarchical sizing and power distribution strategy for hybrid energy storage system. Automotive Innovation, 4, 440–447.CrossRefMATH Li, J., He, H., Wei, Z., & Zhang, X. (2021). Hierarchical sizing and power distribution strategy for hybrid energy storage system. Automotive Innovation, 4, 440–447.CrossRefMATH
Zurück zum Zitat Lin, X., Zhang, J., & Su, L. (2022). A trip distance adaptive real-time optimal energy management strategy for a plug-in hybrid vehicle integrated driving condition prediction. Journal of Energy Storage, 52, 105055.CrossRef Lin, X., Zhang, J., & Su, L. (2022). A trip distance adaptive real-time optimal energy management strategy for a plug-in hybrid vehicle integrated driving condition prediction. Journal of Energy Storage, 52, 105055.CrossRef
Zurück zum Zitat Liu, T., Tan, W., Tang, X., Zhang, J., & XingCao, Y. D. (2021). Driving conditions-driven energy management strategies for hybrid electric vehicles: A review. Renewable and Sustainable Energy Reviews, 151, 111521.CrossRef Liu, T., Tan, W., Tang, X., Zhang, J., & XingCao, Y. D. (2021). Driving conditions-driven energy management strategies for hybrid electric vehicles: A review. Renewable and Sustainable Energy Reviews, 151, 111521.CrossRef
Zurück zum Zitat Lu, Z., Tian, H., Li, R., & Tian, G. (2023). Neural network energy management strategy with optimal input features for plug-in hybrid electric vehicles. Energy, 285, 129399.CrossRefMATH Lu, Z., Tian, H., Li, R., & Tian, G. (2023). Neural network energy management strategy with optimal input features for plug-in hybrid electric vehicles. Energy, 285, 129399.CrossRefMATH
Zurück zum Zitat Martinez, C. M., Hu, X., Cao, D., Velenis, E., Gao, B., & Wellers, M. (2016). Energy management in plug-in hybrid electric vehicles: Recent progress and a connected vehicles perspective. IEEE Transactions on Vehicular Technology, 66(6), 4534–4549.CrossRef Martinez, C. M., Hu, X., Cao, D., Velenis, E., Gao, B., & Wellers, M. (2016). Energy management in plug-in hybrid electric vehicles: Recent progress and a connected vehicles perspective. IEEE Transactions on Vehicular Technology, 66(6), 4534–4549.CrossRef
Zurück zum Zitat Naeem, H. M. Y., Butt, Y. A., Ahmed, Q., & Bhatti, A. I. (2023). Optimal-control-based eco-driving solution for connected battery electric vehicle on a signalized route. Automotive Innovation, 6(4), 586–596.CrossRefMATH Naeem, H. M. Y., Butt, Y. A., Ahmed, Q., & Bhatti, A. I. (2023). Optimal-control-based eco-driving solution for connected battery electric vehicle on a signalized route. Automotive Innovation, 6(4), 586–596.CrossRefMATH
Zurück zum Zitat Piras, M., De Bellis, V., Malfi, E., Novella, R., & Lopez-Juarez, M. (2023). Adaptive ECMS based on speed forecasting for the control of a heavy-duty fuel cell vehicle for real-world driving. Energy Conversion and Management, 289, 117178.CrossRef Piras, M., De Bellis, V., Malfi, E., Novella, R., & Lopez-Juarez, M. (2023). Adaptive ECMS based on speed forecasting for the control of a heavy-duty fuel cell vehicle for real-world driving. Energy Conversion and Management, 289, 117178.CrossRef
Zurück zum Zitat Shi, D., Li, S., Liu, K., Wang, Y., Liu, R., & Guo, J. (2022). Adaptive energy management strategy based on intelligent prediction of driving cycle for plug-in hybrid electric vehicle. Processes, 10(9), 1831.CrossRefMATH Shi, D., Li, S., Liu, K., Wang, Y., Liu, R., & Guo, J. (2022). Adaptive energy management strategy based on intelligent prediction of driving cycle for plug-in hybrid electric vehicle. Processes, 10(9), 1831.CrossRefMATH
Zurück zum Zitat Shi, D., Liu, S., Cai, Y., Wang, S., Li, H., & Chen, L. (2021). Pontryagin’s minimum principle based fuzzy adaptive energy management for hybrid electric vehicle using real-time traffic information. Applied Energy, 286, 116467.CrossRef Shi, D., Liu, S., Cai, Y., Wang, S., Li, H., & Chen, L. (2021). Pontryagin’s minimum principle based fuzzy adaptive energy management for hybrid electric vehicle using real-time traffic information. Applied Energy, 286, 116467.CrossRef
Zurück zum Zitat Shi, D., Xu, H., Wang, S., Hu, J., Chen, L., & Yin, C. (2024). Deep reinforcement learning based adaptive energy management for plug-in hybrid electric vehicle with double deep Q-network. Energy, 305, 132402.CrossRef Shi, D., Xu, H., Wang, S., Hu, J., Chen, L., & Yin, C. (2024). Deep reinforcement learning based adaptive energy management for plug-in hybrid electric vehicle with double deep Q-network. Energy, 305, 132402.CrossRef
Zurück zum Zitat Sun, X., Cao, Y., Jin, Z., Tian, X., & Xue, M. (2022). An adaptive ECMS based on traffic information for plug-in hybrid electric buses. IEEE Transactions on Industrial Electronics, 70(9), 9248–9259.CrossRefMATH Sun, X., Cao, Y., Jin, Z., Tian, X., & Xue, M. (2022). An adaptive ECMS based on traffic information for plug-in hybrid electric buses. IEEE Transactions on Industrial Electronics, 70(9), 9248–9259.CrossRefMATH
Zurück zum Zitat Wang, P., Li, J., Yu, Y., Zhao, S., & Shen, W. (2020). Energy management of plug-in hybrid electric vehicle based on trip characteristic prediction. Proceedings of the Institution of Mechanical Engineers, Part d: Journal of Automobile Engineering, 234(8), 2239–2259.MATH Wang, P., Li, J., Yu, Y., Zhao, S., & Shen, W. (2020). Energy management of plug-in hybrid electric vehicle based on trip characteristic prediction. Proceedings of the Institution of Mechanical Engineers, Part d: Journal of Automobile Engineering, 234(8), 2239–2259.MATH
Zurück zum Zitat Wang, S., Zhang, K., Shi, D., Li, M., & Yin, C. (2024). Research on economical shifting strategy for multi-gear and multi-mode parallel plug-in HEV based on DIRECT algorithm. Energy, 286, 129574.CrossRef Wang, S., Zhang, K., Shi, D., Li, M., & Yin, C. (2024). Research on economical shifting strategy for multi-gear and multi-mode parallel plug-in HEV based on DIRECT algorithm. Energy, 286, 129574.CrossRef
Zurück zum Zitat Wang, W., Cai, Z., & Liu, S. (2021). Design of real-time control based on DP and ECMS for PHEVs. Mathematical Problems in Engineering, 2021, 1–12.CrossRefMATH Wang, W., Cai, Z., & Liu, S. (2021). Design of real-time control based on DP and ECMS for PHEVs. Mathematical Problems in Engineering, 2021, 1–12.CrossRefMATH
Zurück zum Zitat Wei, Z., & Zhang, Y. (2021). Intelligent ECMS for connected plug-in hybrid electric vehicles. IFAC-PapersOnLine, 54(10), 278–283.CrossRefMATH Wei, Z., & Zhang, Y. (2021). Intelligent ECMS for connected plug-in hybrid electric vehicles. IFAC-PapersOnLine, 54(10), 278–283.CrossRefMATH
Zurück zum Zitat Yang, Y., Zhang, Y., Tian, J., & Li, T. (2020). Adaptive real-time optimal energy management strategy for extender range electric vehicle. Energy, 197, 117237.CrossRefMATH Yang, Y., Zhang, Y., Tian, J., & Li, T. (2020). Adaptive real-time optimal energy management strategy for extender range electric vehicle. Energy, 197, 117237.CrossRefMATH
Zurück zum Zitat Zeng, Y., Cai, Y., Kou, G., Gao, W., & Qin, D. (2018). Energy management for plug-in hybrid electric vehicle based on adaptive simplified-ECMS. Sustainability, 10(6), 2060.CrossRefMATH Zeng, Y., Cai, Y., Kou, G., Gao, W., & Qin, D. (2018). Energy management for plug-in hybrid electric vehicle based on adaptive simplified-ECMS. Sustainability, 10(6), 2060.CrossRefMATH
Zurück zum Zitat Zhang, F., Wang, L., Coskun, S., Pang, H., Cui, Y., & Xi, J. (2020). Energy management strategies for hybrid electric vehicles: review, classification, comparison, and outlook. Energies, 13(13), 3352.CrossRefMATH Zhang, F., Wang, L., Coskun, S., Pang, H., Cui, Y., & Xi, J. (2020). Energy management strategies for hybrid electric vehicles: review, classification, comparison, and outlook. Energies, 13(13), 3352.CrossRefMATH
Zurück zum Zitat Zhang, Z., Zhang, T., Hong, J., Zhang, H., & Yang, J. (2022). Energy management optimization of master-slave hybrid electric vehicle under rule-based control strategy. Energy Technology, 10(10), 2200630.CrossRefMATH Zhang, Z., Zhang, T., Hong, J., Zhang, H., & Yang, J. (2022). Energy management optimization of master-slave hybrid electric vehicle under rule-based control strategy. Energy Technology, 10(10), 2200630.CrossRefMATH
Zurück zum Zitat Zhao, K., He, K., Liang, Z., & Mai, M. (2023a). Global optimization-based energy management strategy for series-parallel hybrid electric vehicles using multi-objective optimization algorithm. Automotive Innovation, 6(3), 492–507.CrossRefMATH Zhao, K., He, K., Liang, Z., & Mai, M. (2023a). Global optimization-based energy management strategy for series-parallel hybrid electric vehicles using multi-objective optimization algorithm. Automotive Innovation, 6(3), 492–507.CrossRefMATH
Zurück zum Zitat Zhao, S., Duan, J., Wu, S., Gu, X., Li, C., Yin, K., & Wang, H. (2023b). Genetic algorithm-based SOTIF scenario construction for complex traffic flow. Automotive Innovation, 6(4), 531–546.CrossRefMATH Zhao, S., Duan, J., Wu, S., Gu, X., Li, C., Yin, K., & Wang, H. (2023b). Genetic algorithm-based SOTIF scenario construction for complex traffic flow. Automotive Innovation, 6(4), 531–546.CrossRefMATH
Zurück zum Zitat Zhou, W., Chen, Y., Zhai, H., & Zhang, W. (2021). Predictive energy management for a plug-in hybrid electric vehicle using driving profile segmentation and energy-based analytical SOC planning. Energy, 220, 119700.CrossRef Zhou, W., Chen, Y., Zhai, H., & Zhang, W. (2021). Predictive energy management for a plug-in hybrid electric vehicle using driving profile segmentation and energy-based analytical SOC planning. Energy, 220, 119700.CrossRef
Zurück zum Zitat Zhou, Y., Ravey, A., & Péra, M. C. (2019). A survey on driving prediction techniques for predictive energy management of plug-in hybrid electric vehicles. Journal of Power Sources, 412, 480–495.CrossRefMATH Zhou, Y., Ravey, A., & Péra, M. C. (2019). A survey on driving prediction techniques for predictive energy management of plug-in hybrid electric vehicles. Journal of Power Sources, 412, 480–495.CrossRefMATH
Metadaten
Titel
Research on Adaptive Energy Management Strategy Based on Road Segment Electricity Allocation for the PHEV
verfasst von
Shaohua Wang
Yunxiang Zheng
Dehua Shi
Chun Li
Kaimei Zhang
Publikationsdatum
30.12.2024
Verlag
The Korean Society of Automotive Engineers
Erschienen in
International Journal of Automotive Technology
Print ISSN: 1229-9138
Elektronische ISSN: 1976-3832
DOI
https://doi.org/10.1007/s12239-024-00198-1