Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

09.07.2018 | Original Article | Ausgabe 7/2019

International Journal of Machine Learning and Cybernetics 7/2019

Research on classification method of high-dimensional class-imbalanced datasets based on SVM

Zeitschrift:
International Journal of Machine Learning and Cybernetics > Ausgabe 7/2019
Autoren:
Chunkai Zhang, Ying Zhou, Jianwei Guo, Guoquan Wang, Xuan Wang
Wichtige Hinweise

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

High-dimensional problems result in bad classification results because some combinations of features have an adverse effect on classification; while class-imbalanced problems make the classifier to concern the majority class more but the minority less, because the number of samples of majority class is more than minority class. The problem of both high-dimensional and class-imbalanced classification is found in many fields such as bioinformatics, healthcare and so on. Many researchers study either the high-dimensional problem or class-imbalanced problem and come up with a series of algorithms, but they ignore the above new problem, which indicates high-dimensional problems affect sampling process while class-imbalanced problems interfere feature selection. Firstly, this paper analyses the new problem arising from the mutual influence of the two problems, and then introduces SVM and analyses its advantages in dealing high-dimensional problem and class-imbalanced problem. Next, this paper proposes a new algorithm named BRFE-PBKS-SVM aimed at high-dimensional class-imbalanced datasets, which improves SVM-RFE by considering the class-imbalanced problem in the process of feature selection, and it also improves SMOTE so that the procedure of over-sampling could work in the Hilbert space with an adaptive over-sampling rate by PSO. Finally, the experimental results show the performance of this algorithm.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 7/2019

International Journal of Machine Learning and Cybernetics 7/2019 Zur Ausgabe