Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

Erschienen in: The International Journal of Advanced Manufacturing Technology 7-8/2021

06.07.2021 | ORIGINAL ARTICLE

Research on cutting performance in high-speed milling of TC11 titanium alloy using self-propelled rotary milling cutters

verfasst von: Lu Yujiang, Chen Tao

Erschienen in: The International Journal of Advanced Manufacturing Technology | Ausgabe 7-8/2021

Einloggen, um Zugang zu erhalten
share
TEILEN

Abstract

Titanium alloys are widely used in many areas, such as aerospace, biomedical, and automotive industries, due to their excellent chemical and physical properties. However, its difficult-to-machine characteristic causes various problems in the machining process, such as serious tool wear and elastic deformation of workpieces. To achieve high efficiency and quality of machining titanium alloy materials, this paper conducted an experimental research on the high-speed milling of TC11 titanium alloy with self-propelled rotary milling cutters. In this paper, the wear mechanism of self-propelled rotary milling cutters was explored; the influence of milling velocity was analyzed on cutting process, and the variation laws with the change in milling length were obtained of milling forces, chip morphology, and machined surface quality. The calculation method of self-propelled rotary velocity was proposed, based on the experimental research. The results showed that in the early and middle stages of milling, the insert coating peeled off evenly under the joint action of abrasive and adhesive wear mechanisms. As the milling length increased, the dense notches occurred on the cutting edge of the cutter, the wear mechanism converted gradually into fatigue wear, and furthermore, coating started peeling off the cutting edge with the occurrence of thermal fatigue cracks on the insert. As the milling length was further extended, the milling forces tended to intensify, the chip deformation worsened, and the obvious cracks occurred at the bottom of chips. The increase in milling velocity intensified the friction between chips and self-propelled rotary milling cutters, and decreased the ratio of self-propelled rotary velocity to milling velocity. This caused the drop in cutting performance of cutters and the growth in tool wear rate.
Literatur
1.
Zurück zum Zitat Carou D, Rubio EM, Herrera J, Lauro CH, Davim JP (2017) Latest advances in the micro-milling of titanium alloys: a review. Procedia Manuf 13:275–282 Carou D, Rubio EM, Herrera J, Lauro CH, Davim JP (2017) Latest advances in the micro-milling of titanium alloys: a review. Procedia Manuf 13:275–282
2.
Zurück zum Zitat Ulutan D, Ozel T (2011) Machining induced surface integrity in titanium and nickel alloys: a review. Int J Mach Tool Manu 51(3):250–280 CrossRef Ulutan D, Ozel T (2011) Machining induced surface integrity in titanium and nickel alloys: a review. Int J Mach Tool Manu 51(3):250–280 CrossRef
3.
Zurück zum Zitat Singh R, Khamba JS (2006) Ultrasonic machining of titanium and its alloys: a review. J Mater Process Technol 173(2):125–135 CrossRef Singh R, Khamba JS (2006) Ultrasonic machining of titanium and its alloys: a review. J Mater Process Technol 173(2):125–135 CrossRef
4.
Zurück zum Zitat Thakur A, Gangopadhyay S (2016) State-of-the-art in surface integrity in machining of nickel-based super alloys. Int J Mach Tool Manu 100:25–54 CrossRef Thakur A, Gangopadhyay S (2016) State-of-the-art in surface integrity in machining of nickel-based super alloys. Int J Mach Tool Manu 100:25–54 CrossRef
5.
Zurück zum Zitat Niu BY, Sun J, Yang B (2020) Multisensory based tool wear monitoring for practical applications in milling of titanium alloy. Materials Today: Proceedings 22:1209–1217 Niu BY, Sun J, Yang B (2020) Multisensory based tool wear monitoring for practical applications in milling of titanium alloy. Materials Today: Proceedings 22:1209–1217
6.
Zurück zum Zitat Joy N, Prakash S, Krishnamoorthy A, Antony A (2020) Experimental investigation and analysis of drilling in Grade 5 Titanium alloy (Ti-6Al-4V). Materials Today: Proc 21(1):335–339 Joy N, Prakash S, Krishnamoorthy A, Antony A (2020) Experimental investigation and analysis of drilling in Grade 5 Titanium alloy (Ti-6Al-4V). Materials Today: Proc 21(1):335–339
7.
Zurück zum Zitat Sun H, Xiao H, Li L (2016) Experimental study on cutting force and cutting power in high feed milling of Ti5Al5Mo5VCrFe. Mater Sci Forum 836-837:88–93 CrossRef Sun H, Xiao H, Li L (2016) Experimental study on cutting force and cutting power in high feed milling of Ti5Al5Mo5VCrFe. Mater Sci Forum 836-837:88–93 CrossRef
8.
Zurück zum Zitat Rashid RAR, Palanisamy S, Sun S, Dargusch MS (2016) Tool wear mechanisms involved in crater formation on uncoated carbide tool when machining Ti6Al4V alloy. Int J Adv Manuf Technol 83(9):1457–1465 CrossRef Rashid RAR, Palanisamy S, Sun S, Dargusch MS (2016) Tool wear mechanisms involved in crater formation on uncoated carbide tool when machining Ti6Al4V alloy. Int J Adv Manuf Technol 83(9):1457–1465 CrossRef
9.
Zurück zum Zitat Koseki S, Inoue K, Sekiya K, Morito S, Ohba T, Usuki H (2016) Wear mechanisms of PVD-coated cutting tools during continuous turning of Ti-6Al-4V alloy. Precis Eng 47:434–444 CrossRef Koseki S, Inoue K, Sekiya K, Morito S, Ohba T, Usuki H (2016) Wear mechanisms of PVD-coated cutting tools during continuous turning of Ti-6Al-4V alloy. Precis Eng 47:434–444 CrossRef
10.
Zurück zum Zitat Daymi A, Boujelbene M, Amara AB, Bayraktar E, Katundi D (2011) Surface integrity in high speed end milling of titanium alloy Ti-6Al-4V. Mater Sci Technol 27(1):387–394 CrossRef Daymi A, Boujelbene M, Amara AB, Bayraktar E, Katundi D (2011) Surface integrity in high speed end milling of titanium alloy Ti-6Al-4V. Mater Sci Technol 27(1):387–394 CrossRef
11.
Zurück zum Zitat Yang FZ, Meng GY, Zhao J, Ai X (2009) Fabrication of WC matrix composite tool material and its cutting performance in machining titanium alloys. Tsinghua Sci Technol 14(2):75–78 MathSciNetCrossRef Yang FZ, Meng GY, Zhao J, Ai X (2009) Fabrication of WC matrix composite tool material and its cutting performance in machining titanium alloys. Tsinghua Sci Technol 14(2):75–78 MathSciNetCrossRef
12.
Zurück zum Zitat Tan DW, Chen ZW, Wei WX, Song BC, Guo WM, Lin HT, Wang CY (2020) Wear behavior and mechanism of TiB 2-based ceramic inserts in high-speed cutting of Ti6Al4V alloy. Ceram Int 46(6):8135–8144 CrossRef Tan DW, Chen ZW, Wei WX, Song BC, Guo WM, Lin HT, Wang CY (2020) Wear behavior and mechanism of TiB 2-based ceramic inserts in high-speed cutting of Ti6Al4V alloy. Ceram Int 46(6):8135–8144 CrossRef
13.
Zurück zum Zitat Chowdhury MSI, Bose B, Yamamoto K, Shuster LS, Veldhuis SC (2020) Wear performance investigation of PVD coated and uncoated carbide tools during high-speed machining of TiAl6V4 aerospace alloy. Wear 446-447:203168 CrossRef Chowdhury MSI, Bose B, Yamamoto K, Shuster LS, Veldhuis SC (2020) Wear performance investigation of PVD coated and uncoated carbide tools during high-speed machining of TiAl6V4 aerospace alloy. Wear 446-447:203168 CrossRef
14.
Zurück zum Zitat Wang GY, Liu XL, Gao WJ, Yan BX, Chen T (2019) Study on the design and cutting performance of a revolving cycloid milling cutter. Appl Sci 9(14):2915 CrossRef Wang GY, Liu XL, Gao WJ, Yan BX, Chen T (2019) Study on the design and cutting performance of a revolving cycloid milling cutter. Appl Sci 9(14):2915 CrossRef
15.
Zurück zum Zitat Wang GY, Liu XL, Chen T, Gao WJ (2020) An experimental study on milling titanium alloy with a revolving cycloid milling cutter. Appl Sci 10(4):1423 CrossRef Wang GY, Liu XL, Chen T, Gao WJ (2020) An experimental study on milling titanium alloy with a revolving cycloid milling cutter. Appl Sci 10(4):1423 CrossRef
16.
Zurück zum Zitat Niu QL, An QL, Chen M, Ming WW (2013) Wear mechanisms and performance of coated inserts during face milling of TC11 and TC17 alloys. Mach Sci Technol 17(3):483–495 CrossRef Niu QL, An QL, Chen M, Ming WW (2013) Wear mechanisms and performance of coated inserts during face milling of TC11 and TC17 alloys. Mach Sci Technol 17(3):483–495 CrossRef
17.
Zurück zum Zitat Ji W, Liu XL, Wang LH, Sun SL (2015) Experimental evaluation of polycrystalline diamond (PCD) tool geometries at high feed rate in milling of titanium alloy TC11. Int J Adv Manuf Technol 77(9-12):1549–1555 CrossRef Ji W, Liu XL, Wang LH, Sun SL (2015) Experimental evaluation of polycrystalline diamond (PCD) tool geometries at high feed rate in milling of titanium alloy TC11. Int J Adv Manuf Technol 77(9-12):1549–1555 CrossRef
18.
Zurück zum Zitat Lei ST, Liu WJ (2002) High-speed machining of titanium alloys using the driven rotary tool. Int J Mach Tools Manuf 42(6):653–661 CrossRef Lei ST, Liu WJ (2002) High-speed machining of titanium alloys using the driven rotary tool. Int J Mach Tools Manuf 42(6):653–661 CrossRef
19.
Zurück zum Zitat Olgun O, Budak E (2013) Machining of difficult-to-cut-alloys using rotary turning tools. Procedia CIRP 8:81–87 Olgun O, Budak E (2013) Machining of difficult-to-cut-alloys using rotary turning tools. Procedia CIRP 8:81–87
20.
Zurück zum Zitat Li L, Kishawy HA (2006) A model for cutting forces generated during machining with self-propelled rotary tools. Int J Mach Tools Manuf 46(12-13):1388–1394 CrossRef Li L, Kishawy HA (2006) A model for cutting forces generated during machining with self-propelled rotary tools. Int J Mach Tools Manuf 46(12-13):1388–1394 CrossRef
21.
Zurück zum Zitat Kishawy HA, Pang L, Balazinski M (2011) Modeling of tool wear during hard turning with self-propelled rotary tool. Int J Mech Sci 53(11):1015–1021 CrossRef Kishawy HA, Pang L, Balazinski M (2011) Modeling of tool wear during hard turning with self-propelled rotary tool. Int J Mech Sci 53(11):1015–1021 CrossRef
22.
Zurück zum Zitat Kishawy HA, Li L, EL-Wahab AI (2006) Prediction of chip flow direction during machining with self-propelled rotary tools. Int J Mach Tools Manuf 46(12-13):1680–1688 CrossRef Kishawy HA, Li L, EL-Wahab AI (2006) Prediction of chip flow direction during machining with self-propelled rotary tools. Int J Mach Tools Manuf 46(12-13):1680–1688 CrossRef
23.
Zurück zum Zitat Kossakowska J, Jemielniak K (2012) Application of self-propelled rotary tools for turning of difficult-to-machine materials. Procedia CIRP 1:425–430 Kossakowska J, Jemielniak K (2012) Application of self-propelled rotary tools for turning of difficult-to-machine materials. Procedia CIRP 1:425–430
24.
Zurück zum Zitat Dessoly V, Melkote SN, Lescalier C (2004) Modeling and verification of cutting tool temperatures in rotary tool turning of hardened steel. Int J Mach Tools Manuf 44(14):1463–1470 CrossRef Dessoly V, Melkote SN, Lescalier C (2004) Modeling and verification of cutting tool temperatures in rotary tool turning of hardened steel. Int J Mach Tools Manuf 44(14):1463–1470 CrossRef
25.
Zurück zum Zitat Ezugwu EO, Olajire KA, Wang ZM (2002) Wear evaluation of a self-propelled rotary tool when machining titanium alloy IMI 318. Proc Inst Mech Eng B J Eng Manuf 216:891–897 CrossRef Ezugwu EO, Olajire KA, Wang ZM (2002) Wear evaluation of a self-propelled rotary tool when machining titanium alloy IMI 318. Proc Inst Mech Eng B J Eng Manuf 216:891–897 CrossRef
26.
Zurück zum Zitat Ezugwu EO (2007) Improvements in the machining of aero-engine alloys using self-propelled rotary tooling technique. J Mater Process Technol 185(1-3):60–71 CrossRef Ezugwu EO (2007) Improvements in the machining of aero-engine alloys using self-propelled rotary tooling technique. J Mater Process Technol 185(1-3):60–71 CrossRef
27.
Zurück zum Zitat Dong GJ, Lang CY, Li C, Zhang LM (2020) Formation mechanism and modelling of exit edge-chipping during ultrasonic vibration grinding of deep-small holes of microcrystalline -mica ceramics. Ceram Int 46(8):12458–12469 CrossRef Dong GJ, Lang CY, Li C, Zhang LM (2020) Formation mechanism and modelling of exit edge-chipping during ultrasonic vibration grinding of deep-small holes of microcrystalline -mica ceramics. Ceram Int 46(8):12458–12469 CrossRef
28.
Zurück zum Zitat Li C, Li XL, Huang SQ, Li LQ, Zhang FH (2020) Ultra-precision grinding of Gd 3Ga 5O 12 crystals with graphene oxide coolant: material deformation mechanism and performance evaluation. J Manuf Process 61:417–427 CrossRef Li C, Li XL, Huang SQ, Li LQ, Zhang FH (2020) Ultra-precision grinding of Gd 3Ga 5O 12 crystals with graphene oxide coolant: material deformation mechanism and performance evaluation. J Manuf Process 61:417–427 CrossRef
29.
Zurück zum Zitat Baro PK, Joshi SS, Kapoor SG (2005) Modeling of cutting forces in a face-milling operation with self-propelled round insert milling cutter. Int J Mach Tool Manu 45(7-8):831–839 CrossRef Baro PK, Joshi SS, Kapoor SG (2005) Modeling of cutting forces in a face-milling operation with self-propelled round insert milling cutter. Int J Mach Tool Manu 45(7-8):831–839 CrossRef
30.
Zurück zum Zitat Jegaraj JJR, Raju CS, Kumar KR, Rao CSP (2014) Experimental investigations and development of cutting force model for self-propelled rotary face milling cutter in machining of titanium alloy. Proc Inst Mech Eng B J Eng Manuf 228(9):1081–1089 CrossRef Jegaraj JJR, Raju CS, Kumar KR, Rao CSP (2014) Experimental investigations and development of cutting force model for self-propelled rotary face milling cutter in machining of titanium alloy. Proc Inst Mech Eng B J Eng Manuf 228(9):1081–1089 CrossRef
Metadaten
Titel
Research on cutting performance in high-speed milling of TC11 titanium alloy using self-propelled rotary milling cutters
verfasst von
Lu Yujiang
Chen Tao
Publikationsdatum
06.07.2021
Verlag
Springer London
Erschienen in
The International Journal of Advanced Manufacturing Technology / Ausgabe 7-8/2021
Print ISSN: 0268-3768
Elektronische ISSN: 1433-3015
DOI
https://doi.org/10.1007/s00170-021-07592-4

Weitere Artikel der Ausgabe 7-8/2021

The International Journal of Advanced Manufacturing Technology 7-8/2021 Zur Ausgabe

Premium Partner

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.