Skip to main content
Erschienen in:

18.06.2023

Research on high sensitivity fano resonance sensing based on MIM waveguide coupled with double Fibonacci spirals

verfasst von: Desheng Qu, Qiaohua Wu, Yiping Sun, Chunlei Li

Erschienen in: Journal of Computational Electronics | Ausgabe 5/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, a metal–insulator–metal waveguide coupled with double Fibonacci spiral structure is designed and studied. The Fano resonance characteristics of the structure are analyzed in detail by means of transmission spectra and magnetic field distribution using finite element method. By changing the geometric parameters and refractive index, the sensing characteristics of the structure are quantitatively analyzed. This structure can be used in sensors, not only the sensitivity can reach an extremely high value of 3350 nm/RIU, but also the refractive index and peak wavelength show an excellent linear relationship. This structure provides a new scheme for the design of high sensitivity sensors. In addition, by measuring the refractive index of sodium chloride solution, it is proved that the structure has practical application prospect.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Kazanskiy, N.L., Khonina, S.N., Butt, M.A.: Plasmonic sensors based on Metal-insulator-metal waveguides for refractive index sensing applications: a brief review. Phys. E-Low-Dimens. Syst. Nanostruct. 117, 113798 (2020)CrossRef Kazanskiy, N.L., Khonina, S.N., Butt, M.A.: Plasmonic sensors based on Metal-insulator-metal waveguides for refractive index sensing applications: a brief review. Phys. E-Low-Dimens. Syst. Nanostruct. 117, 113798 (2020)CrossRef
2.
Zurück zum Zitat Barnes, W.L., Dereux, A., Ebbesen, T.W.: Surface plasmon subwavelength optics. Nature 424(6950), 824–830 (2003)CrossRef Barnes, W.L., Dereux, A., Ebbesen, T.W.: Surface plasmon subwavelength optics. Nature 424(6950), 824–830 (2003)CrossRef
3.
Zurück zum Zitat Qiao, L.T., et al.: Study on the Fano resonance of coupling M-type cavity based on surface plasmon polaritons. Opt. Commun. 433, 144–149 (2019)CrossRef Qiao, L.T., et al.: Study on the Fano resonance of coupling M-type cavity based on surface plasmon polaritons. Opt. Commun. 433, 144–149 (2019)CrossRef
4.
Zurück zum Zitat Tian, J.P., et al.: Fano resonance and its application using a defective disk resonator coupled to an MDM plasmon waveguide with a nano-wall. Optik 208, 164136 (2020)CrossRef Tian, J.P., et al.: Fano resonance and its application using a defective disk resonator coupled to an MDM plasmon waveguide with a nano-wall. Optik 208, 164136 (2020)CrossRef
5.
Zurück zum Zitat Chen, J.F., et al.: Refractive index sensing based on multiple fano resonances in a split-ring cavity-coupled MIM waveguide. Photonics 8(11), 472 (2021)CrossRef Chen, J.F., et al.: Refractive index sensing based on multiple fano resonances in a split-ring cavity-coupled MIM waveguide. Photonics 8(11), 472 (2021)CrossRef
6.
Zurück zum Zitat Xiao, G.L., et al.: High sensitivity plasmonic sensor based on fano resonance with inverted U-Shaped resonator. Sensors 21(4), 1164 (2021)CrossRef Xiao, G.L., et al.: High sensitivity plasmonic sensor based on fano resonance with inverted U-Shaped resonator. Sensors 21(4), 1164 (2021)CrossRef
7.
Zurück zum Zitat Wang, Y.L., Hou, Z.L., Yu, L.: Plasmonic nanosensor based on sharp Fano resonances induced by aperture-coupled slot system. Opt. Commun. 480, 126438 (2021)CrossRef Wang, Y.L., Hou, Z.L., Yu, L.: Plasmonic nanosensor based on sharp Fano resonances induced by aperture-coupled slot system. Opt. Commun. 480, 126438 (2021)CrossRef
8.
Zurück zum Zitat Salehnezhad, Z., Soroosh, M., Farmani, A.: Design and numerical simulation of a sensitive plasmonic-based nanosensor utilizing MoS2 monolayer and graphene. Diam. Related Mater. 131, 109594 (2023)CrossRef Salehnezhad, Z., Soroosh, M., Farmani, A.: Design and numerical simulation of a sensitive plasmonic-based nanosensor utilizing MoS2 monolayer and graphene. Diam. Related Mater. 131, 109594 (2023)CrossRef
9.
Zurück zum Zitat Farmani, A.: Three-dimensional FDTD analysis of a nanostructured plasmonic sensor in the near-infrared range. J. Opt. Soc. Am. B-Opt. Phys. 36(2), 401–407 (2019)CrossRef Farmani, A.: Three-dimensional FDTD analysis of a nanostructured plasmonic sensor in the near-infrared range. J. Opt. Soc. Am. B-Opt. Phys. 36(2), 401–407 (2019)CrossRef
10.
Zurück zum Zitat Huang, Y., et al.: Actively tunable fano resonance based on a bowtie-shaped black phosphorus terahertz sensor. Nanomaterials 11(6), 1442 (2021)CrossRef Huang, Y., et al.: Actively tunable fano resonance based on a bowtie-shaped black phosphorus terahertz sensor. Nanomaterials 11(6), 1442 (2021)CrossRef
11.
Zurück zum Zitat Chauhan, D., et al.: Subwavelength plasmonic liquid sensor using Fano resonance in a ring resonator structure. Optik 223, 165545 (2020)CrossRef Chauhan, D., et al.: Subwavelength plasmonic liquid sensor using Fano resonance in a ring resonator structure. Optik 223, 165545 (2020)CrossRef
12.
Zurück zum Zitat Krishnamoorthy, R., Soubache, I.D., Farmani, A.: Exploring surface plasmon resonance ring resonator structure for high sensitivity and ultra-high-Q optical filter with FDTD method. Opt. Quantum Electron. 54(2), 1–13 (2022)CrossRef Krishnamoorthy, R., Soubache, I.D., Farmani, A.: Exploring surface plasmon resonance ring resonator structure for high sensitivity and ultra-high-Q optical filter with FDTD method. Opt. Quantum Electron. 54(2), 1–13 (2022)CrossRef
13.
Zurück zum Zitat Chen, X.H.: Synthesis of multi-band filters based on multi-prototype transformation. IET Microwaves Antennas Propag. 15(2), 103–114 (2021)CrossRef Chen, X.H.: Synthesis of multi-band filters based on multi-prototype transformation. IET Microwaves Antennas Propag. 15(2), 103–114 (2021)CrossRef
14.
Zurück zum Zitat Khani, S., A. Farmani, and P. Rezaei.: Optical resistance switch for optical sensing. Artificial Intelligence in Mechatronics and Civil Engineering, p. 1–38, (2023) Khani, S., A. Farmani, and P. Rezaei.: Optical resistance switch for optical sensing. Artificial Intelligence in Mechatronics and Civil Engineering, p. 1–38, (2023)
15.
Zurück zum Zitat Stern, L., Grajower, M., Levy, U.: Fano resonances and all-optical switching in a resonantly coupled plasmonic-atomic system. Nature Commun. 5(1), 4865 (2014)CrossRef Stern, L., Grajower, M., Levy, U.: Fano resonances and all-optical switching in a resonantly coupled plasmonic-atomic system. Nature Commun. 5(1), 4865 (2014)CrossRef
16.
Zurück zum Zitat Degheidy, A.R., Elkenany, E.B., Alfrnwani, O.A.: Influence of composition, temperature and pressure on the optoelectronic and mechanical properties of InPxSb1-x alloys. Comput. Condens. Matter. 16, 1–7 (2018) Degheidy, A.R., Elkenany, E.B., Alfrnwani, O.A.: Influence of composition, temperature and pressure on the optoelectronic and mechanical properties of InPxSb1-x alloys. Comput. Condens. Matter. 16, 1–7 (2018)
17.
Zurück zum Zitat Zangeneh, A.M.R., et al.: Enhanced sensing of terahertz surface plasmon polaritons in graphene/J-aggregate coupler using FDTD method. Diam. Related Mater. 125, 109005 (2022)CrossRef Zangeneh, A.M.R., et al.: Enhanced sensing of terahertz surface plasmon polaritons in graphene/J-aggregate coupler using FDTD method. Diam. Related Mater. 125, 109005 (2022)CrossRef
18.
Zurück zum Zitat Yu, Y., et al.: Research on fano resonance sensing characteristics based on racetrack resonant cavity. Micromachines 12(11), 1359 (2021)CrossRef Yu, Y., et al.: Research on fano resonance sensing characteristics based on racetrack resonant cavity. Micromachines 12(11), 1359 (2021)CrossRef
19.
Zurück zum Zitat Shi, H.R., et al.: Nanosensor based on Fano resonance in a metal-insulator-metal waveguide structure coupled with a half-ring. Results Phys. 21, 103842 (2021)CrossRef Shi, H.R., et al.: Nanosensor based on Fano resonance in a metal-insulator-metal waveguide structure coupled with a half-ring. Results Phys. 21, 103842 (2021)CrossRef
20.
Zurück zum Zitat Chao, C.T.C., et al.: Highly sensitive and tunable plasmonic sensor based on a nanoring resonator with silver nanorods. Nanomaterials 10(7), 1399 (2020)CrossRef Chao, C.T.C., et al.: Highly sensitive and tunable plasmonic sensor based on a nanoring resonator with silver nanorods. Nanomaterials 10(7), 1399 (2020)CrossRef
21.
Zurück zum Zitat Zafar, R., Salim, M.: Enhanced figure of merit in fano resonance-based plasmonic refractive index sensor. IEEE Sens. J. 15(11), 6313–6317 (2015)CrossRef Zafar, R., Salim, M.: Enhanced figure of merit in fano resonance-based plasmonic refractive index sensor. IEEE Sens. J. 15(11), 6313–6317 (2015)CrossRef
22.
Zurück zum Zitat Hu, J.G., et al.: Strong longitudinal coupling of Tamm plasmon polaritons in graphene/DBR/Ag hybrid structure. Opt. Express 27(13), 18642–18652 (2019)CrossRef Hu, J.G., et al.: Strong longitudinal coupling of Tamm plasmon polaritons in graphene/DBR/Ag hybrid structure. Opt. Express 27(13), 18642–18652 (2019)CrossRef
23.
Zurück zum Zitat Gai, H.F., Wang, J., Tian, Q.: Modified Debye model parameters of metals applicable for broadband calculations. Appl. Opt. 46(12), 2229–2233 (2007)CrossRef Gai, H.F., Wang, J., Tian, Q.: Modified Debye model parameters of metals applicable for broadband calculations. Appl. Opt. 46(12), 2229–2233 (2007)CrossRef
24.
Zurück zum Zitat Kekatpure, R.D., et al.: Solving dielectric and plasmonic waveguide dispersion relations on a pocket calculator. Opt. Express 17(26), 24112–24129 (2009)CrossRef Kekatpure, R.D., et al.: Solving dielectric and plasmonic waveguide dispersion relations on a pocket calculator. Opt. Express 17(26), 24112–24129 (2009)CrossRef
25.
Zurück zum Zitat Rakhshani, M.R., Mansouri-Birjandi, M.A.: High sensitivity plasmonic refractive index sensing and its application for human blood group identification. Sens. Actuat. B-Chem. 249, 168–176 (2017)CrossRef Rakhshani, M.R., Mansouri-Birjandi, M.A.: High sensitivity plasmonic refractive index sensing and its application for human blood group identification. Sens. Actuat. B-Chem. 249, 168–176 (2017)CrossRef
26.
Zurück zum Zitat Khodadadi, M., Moshiri, S.M.M., Nozhat, N.: Theoretical analysis of a simultaneous graphene-based circular plasmonic refractive index and thickness bio-sensor. IEEE Sens. J. 20(16), 9114–9123 (2020)CrossRef Khodadadi, M., Moshiri, S.M.M., Nozhat, N.: Theoretical analysis of a simultaneous graphene-based circular plasmonic refractive index and thickness bio-sensor. IEEE Sens. J. 20(16), 9114–9123 (2020)CrossRef
27.
Zurück zum Zitat Rahmatiyar, M., Afsahi, M., Danaie, M.: Design of a refractive index plasmonic sensor based on a ring resonator coupled to a MIM waveguide containing tapered defects. Plasmonics 15(6), 2169–2176 (2020)CrossRef Rahmatiyar, M., Afsahi, M., Danaie, M.: Design of a refractive index plasmonic sensor based on a ring resonator coupled to a MIM waveguide containing tapered defects. Plasmonics 15(6), 2169–2176 (2020)CrossRef
28.
Zurück zum Zitat Butt, M.A., Kazanskiy, N.L., Khonina, S.N.: Highly sensitive refractive index sensor based on plasmonic bow tie configuration. Photonic Sens. 10(3), 223–232 (2020)CrossRef Butt, M.A., Kazanskiy, N.L., Khonina, S.N.: Highly sensitive refractive index sensor based on plasmonic bow tie configuration. Photonic Sens. 10(3), 223–232 (2020)CrossRef
29.
Zurück zum Zitat Dong, L., et al.: Effects of different concentrations of intraluminal sodium chloride solution on intracavitary ECG used for arm infusion port implantation. Sci. Rep. 12(1), 13813 (2022)MathSciNetCrossRef Dong, L., et al.: Effects of different concentrations of intraluminal sodium chloride solution on intracavitary ECG used for arm infusion port implantation. Sci. Rep. 12(1), 13813 (2022)MathSciNetCrossRef
30.
Zurück zum Zitat Lin, C.C., et al.: A sodium chloride modification of SnO2 electron transport layers to enhance the performance of perovskite solar cells. ACS Omega 6(28), 17880–17889 (2021)CrossRef Lin, C.C., et al.: A sodium chloride modification of SnO2 electron transport layers to enhance the performance of perovskite solar cells. ACS Omega 6(28), 17880–17889 (2021)CrossRef
31.
Zurück zum Zitat Xu, L.P., et al.: Ultrasensitive optical refractive index detection of NaCl and alcohol solutions based on weak value amplification. Plasmonics 15(3), 671–678 (2020)CrossRef Xu, L.P., et al.: Ultrasensitive optical refractive index detection of NaCl and alcohol solutions based on weak value amplification. Plasmonics 15(3), 671–678 (2020)CrossRef
Metadaten
Titel
Research on high sensitivity fano resonance sensing based on MIM waveguide coupled with double Fibonacci spirals
verfasst von
Desheng Qu
Qiaohua Wu
Yiping Sun
Chunlei Li
Publikationsdatum
18.06.2023
Verlag
Springer US
Erschienen in
Journal of Computational Electronics / Ausgabe 5/2023
Print ISSN: 1569-8025
Elektronische ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-023-02069-x