Skip to main content

17.02.2025 | Chassis, Connected Automated Vehicles and ITS, Electrical and Electronics, Vehicle Dynamics and Control

Research on Obstacle Avoidance Path Planning for Wheeled Tractor–Trailer System

verfasst von: Han Jiangyi, Liu Hengyuan, Tang Hao

Erschienen in: International Journal of Automotive Technology

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper presents a method for obstacle avoidance path planning specifically designed for tractor–trailer system. A collision prevention constraint for both the tractor and trailer was established through kinematic analysis within the path planning algorithm. An evaluation method for obstacle avoidance was proposed, which determines whether the vertices of the tractor–trailer outline lie outside the obstacle polygon. The adaptive homotopy algorithm is employed to facilitate nonlinear path planning for the tractor implements. A simulation model for obstacle avoidance path planning was developed using MATLAB and AMPL software for the JM204 tractor and trailer. In the simulation experiments, two distinct working conditions were created based on the distance between the initial position of the tractor–trailer and the obstacles. The results of the simulation experiments demonstrate that the tractor–trailer system can successfully avoid obstacles and reach the target position via the planned path under different working conditions. As the distance between the tractor–trailer unit and the obstacle decreases, the number of iterations and the computational load increase. The simulation results validate the effectiveness of the proposed obstacle avoidance path planning method for the tractor–trailer system.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

ATZelectronics worldwide

ATZlectronics worldwide is up-to-speed on new trends and developments in automotive electronics on a scientific level with a high depth of information. 

Order your 30-days-trial for free and without any commitment.

Weitere Produktempfehlungen anzeigen
Literatur
Zurück zum Zitat Arsalan, B. R., Keyvan, A., et al. (2024). Dynamics modeling and path following controller of tractor–trailer-wheeled robots considering wheels slip. Isa Transactions, 148, 45–63.CrossRefMATH Arsalan, B. R., Keyvan, A., et al. (2024). Dynamics modeling and path following controller of tractor–trailer-wheeled robots considering wheels slip. Isa Transactions, 148, 45–63.CrossRefMATH
Zurück zum Zitat Bouzar Essaidi, A., Haddad, M., et al. (2022). Minimum-time trajectory planning under dynamic constraints for a wheeled mobile robot with a trailer. Mechanism and Machine Theory, 169, 104605.CrossRefMATH Bouzar Essaidi, A., Haddad, M., et al. (2022). Minimum-time trajectory planning under dynamic constraints for a wheeled mobile robot with a trailer. Mechanism and Machine Theory, 169, 104605.CrossRefMATH
Zurück zum Zitat Chen, J., Yin, X., Wang, T., et al. (2022). Local path planning of artificial potential field based on improved repulsive model. Journal of Zhengzhou University (Engineering Science), 44(3), 1–6.MATH Chen, J., Yin, X., Wang, T., et al. (2022). Local path planning of artificial potential field based on improved repulsive model. Journal of Zhengzhou University (Engineering Science), 44(3), 1–6.MATH
Zurück zum Zitat Cui, L., Feng, X., & Wang, C. (2022). Research of unmanned vehicle formation and obstacle avoidance combining artificial potential field and virtual structure. Journal of Ordnance Equipment Engineering, 43(9), 304–308.MATH Cui, L., Feng, X., & Wang, C. (2022). Research of unmanned vehicle formation and obstacle avoidance combining artificial potential field and virtual structure. Journal of Ordnance Equipment Engineering, 43(9), 304–308.MATH
Zurück zum Zitat Li, B., Acarman, T., Zhang, Y., et al. (2020). Tractor-trailer vehicle trajectory planning in narrow environments with a progressively constrained optimal control approach. IEEE Transactions on Intelligent Vehicles, 5(3), 414–425.CrossRefMATH Li, B., Acarman, T., Zhang, Y., et al. (2020). Tractor-trailer vehicle trajectory planning in narrow environments with a progressively constrained optimal control approach. IEEE Transactions on Intelligent Vehicles, 5(3), 414–425.CrossRefMATH
Zurück zum Zitat Li, B., Wang, K., & Shao, Z.. (2015). Time-optimal trajectory planning for tractor–trailer vehicles via simultaneous dynamic optimization. In: IEEE/RSJ International Conference on Intelligent Robots & Systems, IEEE, 3844–3849. Li, B., Wang, K., & Shao, Z.. (2015). Time-optimal trajectory planning for tractor–trailer vehicles via simultaneous dynamic optimization. In: IEEE/RSJ International Conference on Intelligent Robots & Systems, IEEE, 3844–3849.
Zurück zum Zitat Li, B., Zhang, Y., & Acarma, T., et al. (2019). Trajectory planning for a tractor with multiple trailers in extremely narrow environments: A unified approach. In: Proceedings of ICRA, Montreal, QC, Canada, 8557–8562. Li, B., Zhang, Y., & Acarma, T., et al. (2019). Trajectory planning for a tractor with multiple trailers in extremely narrow environments: A unified approach. In: Proceedings of ICRA, Montreal, QC, Canada, 8557–8562.
Zurück zum Zitat Liu, C., Lee, S., & Varnhagen, S., et al. (2017). Path planning for autonomous vehicles using model predictive control. In: Proceedings of Intelligent Vehicles Symposium (IV), Los Angeles, CA, June 11–14, 174–179. Liu, C., Lee, S., & Varnhagen, S., et al. (2017). Path planning for autonomous vehicles using model predictive control. In: Proceedings of Intelligent Vehicles Symposium (IV), Los Angeles, CA, June 11–14, 174–179.
Zurück zum Zitat Liu, C., Zhao, et al. (2018). Research on static path planning method of small obstacles for automatic navigation of agricultural machinery. IFAC-PapersOnLine, 51, 673–677.CrossRefMATH Liu, C., Zhao, et al. (2018). Research on static path planning method of small obstacles for automatic navigation of agricultural machinery. IFAC-PapersOnLine, 51, 673–677.CrossRefMATH
Zurück zum Zitat Meng, T., Yang, T., Huang, J., et al. (2023). Improved hybrid A-star algorithm for path planning in autonomous parking system based on multi-stage dynamic optimization. International Journal of Automotive Technology, 24(2), 459–468.CrossRefMATH Meng, T., Yang, T., Huang, J., et al. (2023). Improved hybrid A-star algorithm for path planning in autonomous parking system based on multi-stage dynamic optimization. International Journal of Automotive Technology, 24(2), 459–468.CrossRefMATH
Zurück zum Zitat Peng, H., Shi, B., et al. (2023). A symplectic method for trajectory planning of general tractor–trailer systems. AppliedMathematical Modelling, 114, 205–229.MathSciNetMATH Peng, H., Shi, B., et al. (2023). A symplectic method for trajectory planning of general tractor–trailer systems. AppliedMathematical Modelling, 114, 205–229.MathSciNetMATH
Zurück zum Zitat Qi, J., Yang, H., & Sun, H. (2021). MOD-RRT: a sampling-based algorithm for robot path planning in dynamic environment. IEEE Transactions on Industrial Electronics, 68(8), 7244–7215.CrossRefMATH Qi, J., Yang, H., & Sun, H. (2021). MOD-RRT: a sampling-based algorithm for robot path planning in dynamic environment. IEEE Transactions on Industrial Electronics, 68(8), 7244–7215.CrossRefMATH
Zurück zum Zitat Roshanianfard, A., et al. (2020). A review of autonomous agricultural vehicles. Journal of Terramechanics, 91(10), 155–183.CrossRefMATH Roshanianfard, A., et al. (2020). A review of autonomous agricultural vehicles. Journal of Terramechanics, 91(10), 155–183.CrossRefMATH
Zurück zum Zitat Rostami, S., Sangaiah, A. K., Wang, J., et al. (2019). Obstacle avoidance of mobile robots using modified artificial potential field algorithm. Journal on Wireless Communications and Networking, 70, 1–19.MATH Rostami, S., Sangaiah, A. K., Wang, J., et al. (2019). Obstacle avoidance of mobile robots using modified artificial potential field algorithm. Journal on Wireless Communications and Networking, 70, 1–19.MATH
Zurück zum Zitat Song, B., Wang, Z., & Zou, L. (2021). An improved PSO algorithm for smooth path planning of mobile robots using continuous high-degree Bezier curve. Applied Soft Computing, 100(1), 1–11.MATH Song, B., Wang, Z., & Zou, L. (2021). An improved PSO algorithm for smooth path planning of mobile robots using continuous high-degree Bezier curve. Applied Soft Computing, 100(1), 1–11.MATH
Zurück zum Zitat WäChter, A., & Biegler, L. T. (2006). On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming, 106(1), 25–57.MathSciNetCrossRefMATH WäChter, A., & Biegler, L. T. (2006). On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming, 106(1), 25–57.MathSciNetCrossRefMATH
Zurück zum Zitat Wei, T., & Long, S. (2020). Path planning for mobile robot based on improved genetic algorithm. Journal of Beijing University of Aeronautics and Astronautics, 46(04), 703–711.MATH Wei, T., & Long, S. (2020). Path planning for mobile robot based on improved genetic algorithm. Journal of Beijing University of Aeronautics and Astronautics, 46(04), 703–711.MATH
Zurück zum Zitat Yu, Y., Liu, Y., & Wang, J. (2023). Obstacle avoidance method based on double DQN for agricultural robots. Computers and Electronics in Agriculture, 204(1), 107546.CrossRefMATH Yu, Y., Liu, Y., & Wang, J. (2023). Obstacle avoidance method based on double DQN for agricultural robots. Computers and Electronics in Agriculture, 204(1), 107546.CrossRefMATH
Zurück zum Zitat Zhang, D., Gong, P., & Hu, W. (2023). Improved artificial potential field method for smart vehicle path planning. Mechanical Science and Technology, 42(1), 1–7.CrossRefMATH Zhang, D., Gong, P., & Hu, W. (2023). Improved artificial potential field method for smart vehicle path planning. Mechanical Science and Technology, 42(1), 1–7.CrossRefMATH
Zurück zum Zitat Zhi, Y. (2019). Numerical Solution of Initial Value Problem for First Order Ordinary Differential Equation. Journal of Communication University of China (Science and Technology), l26(3), 58–60.MATH Zhi, Y. (2019). Numerical Solution of Initial Value Problem for First Order Ordinary Differential Equation. Journal of Communication University of China (Science and Technology), l26(3), 58–60.MATH
Metadaten
Titel
Research on Obstacle Avoidance Path Planning for Wheeled Tractor–Trailer System
verfasst von
Han Jiangyi
Liu Hengyuan
Tang Hao
Publikationsdatum
17.02.2025
Verlag
The Korean Society of Automotive Engineers
Erschienen in
International Journal of Automotive Technology
Print ISSN: 1229-9138
Elektronische ISSN: 1976-3832
DOI
https://doi.org/10.1007/s12239-024-00188-3