Skip to main content
Erschienen in:

22.10.2021

Research on Path Planning Algorithm of Autonomous Vehicles Based on Improved RRT Algorithm

verfasst von: Guanghao Huang, Qinglu Ma

Erschienen in: International Journal of Intelligent Transportation Systems Research | Ausgabe 1/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Recently, the path planning has become one of the key research hot issues in the field of autonomous vehicles, which has attracted the attention of more and more related researchers. When RRT (Rapidly-exploring Random Tree) algorithm is used for path planning in complex environment with a large number of random obstacles, the obtained path is twist and the algorithm cannot converge quickly, which cannot meet the requirements of autonomous vehicles’ path planning. This paper presents an improved path planning algorithm based on RRT algorithm. Firstly, random points are generated using the circular sampling strategy, which ensures the randomness of the original RRT algorithm and improves the sampling efficiency. Secondly, an extended random point rule based on cost function is designed to filter random points. Then consider the vehicle corner range when choosing the adjacent points, select the appropriate adjacent points. Finally, the B-spline curve is used to simplify and smooth the path. The experimental results show that the quality of the path planned by the improved RRT algorithm in this paper is significantly improved compared with the RRT algorithm and the B-RRT (Bidirectional RRT) algorithm. This can be seen from the four aspects of the time required to plan the path, mean curvature, mean square deviation of curvature and path length. Compared with the RRT algorithm, they are reduced by 55.3 %, 68.78 %, 55.41 % and 19.5 %; compared with the B-RRT algorithm, they are reduced by 29.5 %, 64.02 %, 39.51 % and 11.25 %. The algorithm will make the planned paths more suitable for autonomous vehicles to follow.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

ATZelectronics worldwide

ATZlectronics worldwide is up-to-speed on new trends and developments in automotive electronics on a scientific level with a high depth of information. 

Order your 30-days-trial for free and without any commitment.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Weitere Produktempfehlungen anzeigen
Literatur
1.
Zurück zum Zitat Khatib, O.: Real-time obstacle avoidance for mobile robots manipulators and mobile robots. J. Int. J. Robot. Res. 5(1), 90–98 (1986)CrossRef Khatib, O.: Real-time obstacle avoidance for mobile robots manipulators and mobile robots. J. Int. J. Robot. Res. 5(1), 90–98 (1986)CrossRef
2.
Zurück zum Zitat Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4(2), 100–107 (1968)CrossRef Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4(2), 100–107 (1968)CrossRef
3.
Zurück zum Zitat Lu Y., Yi S., Liu Y., et al.: A novel path planning method for biomimetic robot based on deep learning. Assem. Autom. 36(2), 186–191 (2016) Lu Y., Yi S., Liu Y., et al.: A novel path planning method for biomimetic robot based on deep learning. Assem. Autom. 36(2), 186–191 (2016)
4.
Zurück zum Zitat Jiang, M., Wang, F., Sun, L.: Research on path planning of mobile robot based on improved ant colony algorithm. Chin. J. Sci. Instrum. 4(2), 113–121 (2019) Jiang, M., Wang, F., Sun, L.: Research on path planning of mobile robot based on improved ant colony algorithm. Chin. J. Sci. Instrum. 4(2), 113–121 (2019)
5.
Zurück zum Zitat Lavalle, S.M., Kuffner, J.R.J.J.: Randomized kinodynamic planning. Int. J. Robot. Res. 20(5), 378–400 (2001)CrossRef Lavalle, S.M., Kuffner, J.R.J.J.: Randomized kinodynamic planning. Int. J. Robot. Res. 20(5), 378–400 (2001)CrossRef
6.
Zurück zum Zitat Kuffner, J.R.J.J., Lavalle, S.M.: RRT-connect: An efficient approach to single-query path planning. Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), vol. 2, pp. 995-1001. IEEE, San Francisco (2000) Kuffner, J.R.J.J., Lavalle, S.M.: RRT-connect: An efficient approach to single-query path planning. Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), vol. 2, pp. 995-1001. IEEE, San Francisco (2000)
7.
Zurück zum Zitat Bruce, J., Veloso, M.M.: Real-time randomized path planning for robot navigation. In: Kaminka, G.A., Lima, P.U., Rojas, R. (eds.) RoboCup 2002. Robot Soccer World Cup VI, RoboCup (2002) Bruce, J., Veloso, M.M.: Real-time randomized path planning for robot navigation. In: Kaminka, G.A., Lima, P.U., Rojas, R. (eds.) RoboCup 2002. Robot Soccer World Cup VI, RoboCup (2002)
8.
Zurück zum Zitat Karaman, S., Frazzoli, E.: Sampling-based algorithms for optimal motion planning. Int. J. Robot. Res. 30(7), 846–894 (2011)CrossRef Karaman, S., Frazzoli, E.: Sampling-based algorithms for optimal motion planning. Int. J. Robot. Res. 30(7), 846–894 (2011)CrossRef
10.
Zurück zum Zitat Adiyatov, O., Varol, H.A.: Rapidly-exploring random tree based memory efficient motion planning. IEEE International Conference on Mechatronics and Automation, Takamatsu, pp. 354-359 (2013) Adiyatov, O., Varol, H.A.: Rapidly-exploring random tree based memory efficient motion planning. IEEE International Conference on Mechatronics and Automation, Takamatsu, pp. 354-359 (2013)
11.
Zurück zum Zitat Gammell, J.D., Srinvasa, S.S., Barfoot, T.D.: Informed RRT*: Optimal sampling-based path planning focused via direct sampling of an admissible ellipsoidal heuristic. International Conference on Intelligent Robots and Systems. pp. 2997-3004. IEEE, Chicago (2014) Gammell, J.D., Srinvasa, S.S., Barfoot, T.D.: Informed RRT*: Optimal sampling-based path planning focused via direct sampling of an admissible ellipsoidal heuristic. International Conference on Intelligent Robots and Systems. pp. 2997-3004. IEEE, Chicago (2014)
12.
Zurück zum Zitat Qureshi, A.H., Ayaz, Y.: Intelligent bidirectional rapidly-exploring random trees for optimal motion planning in complex cluttered environments. Robot. Auton. Syst. 68, 1–11 (2015)CrossRef Qureshi, A.H., Ayaz, Y.: Intelligent bidirectional rapidly-exploring random trees for optimal motion planning in complex cluttered environments. Robot. Auton. Syst. 68, 1–11 (2015)CrossRef
13.
Zurück zum Zitat Qureshi, A.H., Mumtaz, S., Ayaz, Y., et al.: Triangular geometrized sampling heuristics for fast optimal motion planning. Int. J. Adv. Rob. Syst. 12(2), 86–93 (2015) Qureshi, A.H., Mumtaz, S., Ayaz, Y., et al.: Triangular geometrized sampling heuristics for fast optimal motion planning. Int. J. Adv. Rob. Syst. 12(2), 86–93 (2015)
14.
Zurück zum Zitat Pereira, N., Ribeiro, A.F., Lopes, G., et al.: Path planning towards non-compulsory multiple targets using TWIN-RRT*. Ind Robot 43(4), 370–379 (2016)CrossRef Pereira, N., Ribeiro, A.F., Lopes, G., et al.: Path planning towards non-compulsory multiple targets using TWIN-RRT*. Ind Robot 43(4), 370–379 (2016)CrossRef
15.
Zurück zum Zitat Bascetta, L., Iñigo Arrieta, M., Prandini, M.: Flat-RRT*: A sampling-based optimal trajectory planner for differentially flat vehicles with constrained dynamics. IFAC-Papers Online, vol. 50, no. 1, pp. 6965-6970 (2017) Bascetta, L., Iñigo Arrieta, M., Prandini, M.: Flat-RRT*: A sampling-based optimal trajectory planner for differentially flat vehicles with constrained dynamics. IFAC-Papers Online, vol. 50, no. 1, pp. 6965-6970 (2017)
16.
Zurück zum Zitat Tahir, Z., Qureshi, A.H., Ayaz, Y., et al.: Potentially guided bidirectionalized RRT* for fast optimal path planning in cluttered environments. Robotics 108, 13-27 (2018) Tahir, Z., Qureshi, A.H., Ayaz, Y., et al.: Potentially guided bidirectionalized RRT* for fast optimal path planning in cluttered environments. Robotics 108, 13-27 (2018)
17.
Zurück zum Zitat Liu, H., Zhang, X., Wen, J., et al.: Goal-biased Bidirectional RRT based on Curve-smoothing. IFAC-Papers Online 52(24), 255–260 (2019)CrossRef Liu, H., Zhang, X., Wen, J., et al.: Goal-biased Bidirectional RRT based on Curve-smoothing. IFAC-Papers Online 52(24), 255–260 (2019)CrossRef
18.
Zurück zum Zitat Li, Y., Xu, D., Zhou, C.: Cooperation path planning of dual-robot based on self-adaptive stepsize RRT. Robot 42(5), 606–616 (2020) Li, Y., Xu, D., Zhou, C.: Cooperation path planning of dual-robot based on self-adaptive stepsize RRT. Robot 42(5), 606–616 (2020)
19.
Zurück zum Zitat Yang, Z., Wang, Y., Qi, A.: Improved RRT* algorithm based global obstacle avoidance planning for unmanned surface vehicles. ShipSci. Technol. 41(23), 167–172 (2019) Yang, Z., Wang, Y., Qi, A.: Improved RRT* algorithm based global obstacle avoidance planning for unmanned surface vehicles. ShipSci. Technol. 41(23), 167–172 (2019)
20.
Zurück zum Zitat Li, Y., Wei, Wu, Gao, Y., et al.: PQ-RRT*: An improved path planning algorithm for mobile robots. Expert systems with applications, vol. 152 (2020) Li, Y., Wei, Wu, Gao, Y., et al.: PQ-RRT*: An improved path planning algorithm for mobile robots. Expert systems with applications, vol. 152 (2020)
21.
Zurück zum Zitat Veneri, M., Massaro, M.: The effect of Ackermann steering on the performance of race cars. Veh. Syst. Dyn. 59(6), 907–927 (2021)CrossRef Veneri, M., Massaro, M.: The effect of Ackermann steering on the performance of race cars. Veh. Syst. Dyn. 59(6), 907–927 (2021)CrossRef
Metadaten
Titel
Research on Path Planning Algorithm of Autonomous Vehicles Based on Improved RRT Algorithm
verfasst von
Guanghao Huang
Qinglu Ma
Publikationsdatum
22.10.2021
Verlag
Springer US
Erschienen in
International Journal of Intelligent Transportation Systems Research / Ausgabe 1/2022
Print ISSN: 1348-8503
Elektronische ISSN: 1868-8659
DOI
https://doi.org/10.1007/s13177-021-00281-2

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.