Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

Erschienen in: Advances in Manufacturing 3/2019

27.08.2019

Research on temperature field of non-uniform heat source model in surface grinding by cup wheel

verfasst von: Shi-Jie Dai, Xiao-Qiang Li, Hui-Bo Zhang

Erschienen in: Advances in Manufacturing | Ausgabe 3/2019

Einloggen, um Zugang zu erhalten
share
TEILEN

Abstract

To address the problems of thermal damage to a workpiece surface caused by the instantaneous high temperature during grinding and the difficulty in monitoring temperature in real time, the temperature field in the case of composite surface grinding by a cup wheel is studied. In order to predict the grinding temperature, considering material removal and grinding force distribution, a non-uniform heat source model with different function distributions in the circumferential and radial directions in the cylindrical coordinate system is first proposed; then, the analytical model is deduced and the numerical model of the temperature field is established based on the heat source model. The validation experiments for grinding temperature field are carried out using a high-definition infrared thermal imager and an artificial thermocouple. Compared to the temperature field based on the uniform heat source model, the results based on the non-uniform heat source model are in better agreement with the actual temperature field, and the temperature prediction error is reduced from approximately 23% to 6%. Thus, the present study provides a more accurate theoretical basis for preventing burns in cup wheel surface grinding.
Literatur
1.
Zurück zum Zitat Zheng L, Ding WF, Ma CY et al (2015) Grinding temperature and wheel wear of porous metal-bonded cubic boron nitride super abrasive wheels in high-efficiency deep grinding. Proc Inst Mech Eng B-J Eng 231(11):1961–1971 Zheng L, Ding WF, Ma CY et al (2015) Grinding temperature and wheel wear of porous metal-bonded cubic boron nitride super abrasive wheels in high-efficiency deep grinding. Proc Inst Mech Eng B-J Eng 231(11):1961–1971
2.
Zurück zum Zitat Bao YJ, Gao H, Liang YD et al (2013) Modeling and experiment of drilling temperature field of carbon fiber epoxy resin composites. Acta Armamentarii 34(7):846–852 Bao YJ, Gao H, Liang YD et al (2013) Modeling and experiment of drilling temperature field of carbon fiber epoxy resin composites. Acta Armamentarii 34(7):846–852
3.
Zurück zum Zitat Xie GZ, Han H, Xu XP et al (2009) Study on high-efficiency deep grinding temperature of silicon nitride ceramics. Chin J Mech Eng-En 45(3):109–114 CrossRef Xie GZ, Han H, Xu XP et al (2009) Study on high-efficiency deep grinding temperature of silicon nitride ceramics. Chin J Mech Eng-En 45(3):109–114 CrossRef
4.
Zurück zum Zitat Liu C, Ding W, Li Z et al (2016) Prediction of high-speed grinding temperature of titanium matrix composites using BP neural network based on PSO algorithm. Int J Adv Manuf Tech 89(5–8):1–9 Liu C, Ding W, Li Z et al (2016) Prediction of high-speed grinding temperature of titanium matrix composites using BP neural network based on PSO algorithm. Int J Adv Manuf Tech 89(5–8):1–9
5.
Zurück zum Zitat Malkin S, Guo C (2007) Thermal analysis of grinding. CIRP Ann Manuf Technol 56(2):760–782 CrossRef Malkin S, Guo C (2007) Thermal analysis of grinding. CIRP Ann Manuf Technol 56(2):760–782 CrossRef
6.
Zurück zum Zitat Guo C, Malkin S (2000) Energy partition and cooling during grinding. J Manuf Process 2(3):151–157 CrossRef Guo C, Malkin S (2000) Energy partition and cooling during grinding. J Manuf Process 2(3):151–157 CrossRef
7.
Zurück zum Zitat Wang L, Qin Y, Liu ZC et al (2003) Computer simulation of a workpiece temperature field during the grinding process. Proc Inst Mech Eng B-J Eng 217(7):953–959 CrossRef Wang L, Qin Y, Liu ZC et al (2003) Computer simulation of a workpiece temperature field during the grinding process. Proc Inst Mech Eng B-J Eng 217(7):953–959 CrossRef
8.
Zurück zum Zitat Wang X, Yu T, Sun X et al (2016) Study of 3D grinding temperature field based on finite difference method: considering machining parameters and energy partition. Int J Adv Manuf Tech 84(5–8):915–927 Wang X, Yu T, Sun X et al (2016) Study of 3D grinding temperature field based on finite difference method: considering machining parameters and energy partition. Int J Adv Manuf Tech 84(5–8):915–927
9.
Zurück zum Zitat Tahvilian AM, Liu Z, Champliaud H et al (2013) Experimental and finite element analysis of temperature and energy partition to the workpiece while grinding with a flexible robot. J Mater Process Tech 213(12):2292–2303 CrossRef Tahvilian AM, Liu Z, Champliaud H et al (2013) Experimental and finite element analysis of temperature and energy partition to the workpiece while grinding with a flexible robot. J Mater Process Tech 213(12):2292–2303 CrossRef
10.
Zurück zum Zitat Jaeger JC (1942) Moving sources of heat and the temperature of sliding contacts. Proc R Soc N S W 76(3):203–224 Jaeger JC (1942) Moving sources of heat and the temperature of sliding contacts. Proc R Soc N S W 76(3):203–224
11.
Zurück zum Zitat Bei JY (1964) Analysis and research of grinding temperature. J Shanghai Jiaotong Univ 28(3):57–73 Bei JY (1964) Analysis and research of grinding temperature. J Shanghai Jiaotong Univ 28(3):57–73
12.
Zurück zum Zitat Mao C (2008) The research on the temperature field and thermal damage in the surface grinding. Doctor dissertation, Hunan University Mao C (2008) The research on the temperature field and thermal damage in the surface grinding. Doctor dissertation, Hunan University
13.
Zurück zum Zitat Zhang ZY, Shang W, Ding HH et al (2016) Thermal model and temperature field in rail grinding process based on a moving heat source. Appl Therm Eng 106:855–864 CrossRef Zhang ZY, Shang W, Ding HH et al (2016) Thermal model and temperature field in rail grinding process based on a moving heat source. Appl Therm Eng 106:855–864 CrossRef
14.
Zurück zum Zitat Lin B, Zhou K, Guo J et al (2018) Influence of grinding parameters on surface temperature and burn behaviors of grinding rail. Tribol Int 122:151–162 CrossRef Lin B, Zhou K, Guo J et al (2018) Influence of grinding parameters on surface temperature and burn behaviors of grinding rail. Tribol Int 122:151–162 CrossRef
15.
Zurück zum Zitat Zhang X, Lin B, Xi H (2013) Validation of an analytical model for grinding temperatures in surface grinding by cup wheel with numerical and experimental results. Int J Heat Mass Trans 58(1–2):29–42 CrossRef Zhang X, Lin B, Xi H (2013) Validation of an analytical model for grinding temperatures in surface grinding by cup wheel with numerical and experimental results. Int J Heat Mass Trans 58(1–2):29–42 CrossRef
16.
Zurück zum Zitat Zhang X, Lin B (2013) Research on the analytical thermal model in surface grinding by cup wheel. Int J Adv Manuf Tech 66(1–4):1–13 CrossRef Zhang X, Lin B (2013) Research on the analytical thermal model in surface grinding by cup wheel. Int J Adv Manuf Tech 66(1–4):1–13 CrossRef
17.
Zurück zum Zitat Wang RQ, Dai SJ, Zhang HB et al (2017) The temperature field study on the annular heat source model in large surface grinding. Int J Adv Manuf Tech 93(9–12):3261–3273 CrossRef Wang RQ, Dai SJ, Zhang HB et al (2017) The temperature field study on the annular heat source model in large surface grinding. Int J Adv Manuf Tech 93(9–12):3261–3273 CrossRef
18.
Zurück zum Zitat Xu K, Wei C, Hu D et al (2011) Temperature investigation of coated workpieces in intermittent grinding with a cup wheel. Proc Inst Mech Eng B-J Eng 226(2):239–246 CrossRef Xu K, Wei C, Hu D et al (2011) Temperature investigation of coated workpieces in intermittent grinding with a cup wheel. Proc Inst Mech Eng B-J Eng 226(2):239–246 CrossRef
19.
Zurück zum Zitat Outwater JO, Shaw MC (1952) Surface temperature in grinding. Trans ASME 74:73–86 Outwater JO, Shaw MC (1952) Surface temperature in grinding. Trans ASME 74:73–86
20.
Zurück zum Zitat Hahn RS (1962) On the nature of the grinding process. In: Proceeding of the 3rd international conference on machine tool design and research, Birmingham, UK, pp 129–154 Hahn RS (1962) On the nature of the grinding process. In: Proceeding of the 3rd international conference on machine tool design and research, Birmingham, UK, pp 129–154
21.
Zurück zum Zitat Fujiwara T, Tsukamoto S, Ohashi K et al (2014) Study on grinding force distribution on cup type electroplated diamond wheel in face grinding of cemented carbide. Adv Mater Res 1017:9–14 CrossRef Fujiwara T, Tsukamoto S, Ohashi K et al (2014) Study on grinding force distribution on cup type electroplated diamond wheel in face grinding of cemented carbide. Adv Mater Res 1017:9–14 CrossRef
22.
Zurück zum Zitat Badger J, Drazumeric R, Krajnik P (2016) Grinding of cermets with cup-wheels. Mater Sci Forum 874:115–123 CrossRef Badger J, Drazumeric R, Krajnik P (2016) Grinding of cermets with cup-wheels. Mater Sci Forum 874:115–123 CrossRef
23.
Zurück zum Zitat Li X (2014) Application of self-inhaling internal cooling wheel in vertical surface grinding. Chin J Mech Eng-En 27(1):86–91 CrossRef Li X (2014) Application of self-inhaling internal cooling wheel in vertical surface grinding. Chin J Mech Eng-En 27(1):86–91 CrossRef
24.
Zurück zum Zitat Nayak D, Bhatnagar N, Mahajan P (2005) Machining studies of ud-frp composites part 2: finite element analysis. Mach Sci Technol 9(4):503–528 CrossRef Nayak D, Bhatnagar N, Mahajan P (2005) Machining studies of ud-frp composites part 2: finite element analysis. Mach Sci Technol 9(4):503–528 CrossRef
25.
Zurück zum Zitat Zhou K, Ding HH, Wang RX et al (2019) Influence of grinding pressure on removal behaviours of rail material. Tribol Int 134:417–426 CrossRef Zhou K, Ding HH, Wang RX et al (2019) Influence of grinding pressure on removal behaviours of rail material. Tribol Int 134:417–426 CrossRef
Metadaten
Titel
Research on temperature field of non-uniform heat source model in surface grinding by cup wheel
verfasst von
Shi-Jie Dai
Xiao-Qiang Li
Hui-Bo Zhang
Publikationsdatum
27.08.2019
Verlag
Shanghai University
Erschienen in
Advances in Manufacturing / Ausgabe 3/2019
Print ISSN: 2095-3127
Elektronische ISSN: 2195-3597
DOI
https://doi.org/10.1007/s40436-019-00272-3

Weitere Artikel der Ausgabe 3/2019

Advances in Manufacturing 3/2019 Zur Ausgabe

Premium Partner

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.