Skip to main content
Erschienen in:

24.02.2022

Research on the Reversible and Irreversible Heat Generation of LiNi1−x−yCoxMnyO2-Based Lithium-Ion Batteries

verfasst von: Qiaoping Zhang, Fanglin Wei, Peng Zhang, Ruize Dong, Jiaxin Li, Pengzhao Li, Qiurong Jia, Yanxia Liu, Jing Mao, Guosheng Shao

Erschienen in: Fire Technology | Ausgabe 3/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Accidents involving fires and explosions caused by lithium-ion battery thermal runaway have severely hampered the development of electric vehicles. With the purpose of improving the safety of battery operation and avoiding thermal runaway of lithium-ion batteries. This work conducts a full-scale heat generation quantitative test of two types of LiNi1−x−yCoxMnyO2-based commercial batteries by measuring the voltage-temperature coefficient (dE/dT) and the overpotential using the galvanostatic intermittent titration technique (GITT). Results indicate that that the heat generation rates of the two types of batteries exhibit similar trends. Battery heat generation is a function of C-rate, temperature and state of charge. Among them, C-rate is the most important influencing factor. The reversible heat contribution is the most significant at higher temperatures and lower C-rates. In most cases, the irreversible heat accounts for the dominant contribution to the total heat generation. The contribution of heat generation due to mass transport limitation is dominant among irreversible heat, and it is more significantly affected by temperature and state of charge, whereas the ohmic contribution shows a minor impact. The detailed analysis of the reversible and irreversible heat generation can provide effective theoretical guidance for safety warning and fire protection of lithium-ion battery systems, minimize the probability of the risk of fire accidents of the lithium-ion battery.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
3.
Zurück zum Zitat Rezaei A, Burl JB, Zhou B (2018) Estimation of the ECMS equivalent factor bounds for hybrid electric vehicles. IEEE Trans Control Syst Technol 26(6):2198–2205CrossRef Rezaei A, Burl JB, Zhou B (2018) Estimation of the ECMS equivalent factor bounds for hybrid electric vehicles. IEEE Trans Control Syst Technol 26(6):2198–2205CrossRef
4.
Zurück zum Zitat Plötz P, Funke SÁ, Jochem P (2018) Empirical fuel consumption and CO2 emissions of plug-in hybrid electric vehicles. J Ind Ecol 22(4):773–784CrossRef Plötz P, Funke SÁ, Jochem P (2018) Empirical fuel consumption and CO2 emissions of plug-in hybrid electric vehicles. J Ind Ecol 22(4):773–784CrossRef
5.
25.
Zurück zum Zitat Lu WQ, Yang H, Prakash J (2006) Determination of the reversible and irreversible heats of LiNi0.8Co0.2O2/mesocarbon microbead Li-ion cell reactions using isothermal microcalorimetery. Electrochim Acta 51(7):1322–1329CrossRef Lu WQ, Yang H, Prakash J (2006) Determination of the reversible and irreversible heats of LiNi0.8Co0.2O2/mesocarbon microbead Li-ion cell reactions using isothermal microcalorimetery. Electrochim Acta 51(7):1322–1329CrossRef
30.
Zurück zum Zitat Mao J, Zhang P, Liu X, Shao G, Dai K (2020) Entropy change characteristics of the LiNi0.5Mn1.5O4 cathode material for lithium-ion batteries. ACS Omega 5:4109–4114CrossRef Mao J, Zhang P, Liu X, Shao G, Dai K (2020) Entropy change characteristics of the LiNi0.5Mn1.5O4 cathode material for lithium-ion batteries. ACS Omega 5:4109–4114CrossRef
36.
Zurück zum Zitat Cano ZP, Banham D, Ye S, Hintennach A, Lu J, Fowler M, Chen Z (2018) Batteries and fuel cells for emerging electric vehicle markets. Nat Energy 3(4):279–289CrossRef Cano ZP, Banham D, Ye S, Hintennach A, Lu J, Fowler M, Chen Z (2018) Batteries and fuel cells for emerging electric vehicle markets. Nat Energy 3(4):279–289CrossRef
37.
Zurück zum Zitat Needell ZA, McNerney J, Chang MT, Trancik JE (2016) Potential for widespread electrification of personal vehicle travel in the United States. Nat Energy 1(9):16112CrossRef Needell ZA, McNerney J, Chang MT, Trancik JE (2016) Potential for widespread electrification of personal vehicle travel in the United States. Nat Energy 1(9):16112CrossRef
50.
Metadaten
Titel
Research on the Reversible and Irreversible Heat Generation of LiNi1−x−yCoxMnyO2-Based Lithium-Ion Batteries
verfasst von
Qiaoping Zhang
Fanglin Wei
Peng Zhang
Ruize Dong
Jiaxin Li
Pengzhao Li
Qiurong Jia
Yanxia Liu
Jing Mao
Guosheng Shao
Publikationsdatum
24.02.2022
Verlag
Springer US
Erschienen in
Fire Technology / Ausgabe 3/2023
Print ISSN: 0015-2684
Elektronische ISSN: 1572-8099
DOI
https://doi.org/10.1007/s10694-022-01220-7

Weitere Artikel der Ausgabe 3/2023

Fire Technology 3/2023 Zur Ausgabe