Skip to main content
Erschienen in: Advances in Manufacturing 3/2022

26.05.2022

Research on the underlying mechanism behind abrasive flow machining on micro-slit structures and simulation of viscoelastic media

verfasst von: Bao-Cai Zhang, Shi-Fei Chen, Nasim Khiabani, Yu Qiao, Xin-Chang Wang

Erschienen in: Advances in Manufacturing | Ausgabe 3/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this study, the machining mechanism of abrasive flow machining (AFM) microstructures was analyzed in depth according to the transmission morphology and rheological behaviors of the abrasive media. The transmission morphology demonstrated the excellent combination of the polymer melt with abrasive grains at the interface, indicating that the polymer melt, combined with the uniform distribution of the polymer chains, could exert a harmonious axial force on the abrasive grains. Based on the rheological behavior analysis of the abrasive media, for example, the stress relaxation and moduli of storage and loss, a machining mechanism model was established incorporating the effect of microplastic deformation and continuous viscous flow, which was further verified by the grooves along the flow direction. In addition, the Phan-Thien-Tanner (PTT) model combined with a wall slipping model was employed to simulate the machining process for the first time here. The value of the simulated pressure (1.3 MPa) was similar to the measured pressure (1.45 MPa), as well as the simulated volumetric rate (0.011 4 mL/s) to the measured volumetric rate (0.067 mL/s), which further proved the validity of the simulation results. The flow duration (21 s) derived from a velocity of 1.2 mm/s further confirmed the residual stretched state of the polymer chains, which favored the elasticity of the abrasive media on the grains. Meanwhile, the roughly uniform distribution of the shear rate at the main machining region exhibited the advantages of evenly spread storage and loss moduli, contributing to the even extension of indentation caused by the grains on the target surface, which agreed with the mechanism model and machined surface morphology.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Oliver TA, Bogard DG, Moser RD (2019) Large eddy simulation of compressible, shaped-hole film cooling. Int J Heat Mass Tran 140:498–517CrossRef Oliver TA, Bogard DG, Moser RD (2019) Large eddy simulation of compressible, shaped-hole film cooling. Int J Heat Mass Tran 140:498–517CrossRef
4.
Zurück zum Zitat Mirjavadi SS, Alipour M, Hamouda AMS et al (2017) Effect of multi-pass friction stir processing on the microstructure, mechanical and wear properties of AA5083/ZrO2 nanocomposites. J Alloy Compd 726:1262–1273CrossRef Mirjavadi SS, Alipour M, Hamouda AMS et al (2017) Effect of multi-pass friction stir processing on the microstructure, mechanical and wear properties of AA5083/ZrO2 nanocomposites. J Alloy Compd 726:1262–1273CrossRef
5.
Zurück zum Zitat Gorana VK, Jain VK, Lal GK (2006) Prediction of surface roughness during abrasive flow machining. Int J Adv Manuf Technol 31(3):258–267CrossRef Gorana VK, Jain VK, Lal GK (2006) Prediction of surface roughness during abrasive flow machining. Int J Adv Manuf Technol 31(3):258–267CrossRef
6.
Zurück zum Zitat Rhoades L (1991) Abrasive flow machining: a case study. J Mater Process Technol 28(1):107–116CrossRef Rhoades L (1991) Abrasive flow machining: a case study. J Mater Process Technol 28(1):107–116CrossRef
7.
Zurück zum Zitat Jain RK, Jain VK, Dixit PM (1999) Modeling of material removal and surface roughness in abrasive flow machining process. Int J Mach Tools Manuf 39(12):1903–1923CrossRef Jain RK, Jain VK, Dixit PM (1999) Modeling of material removal and surface roughness in abrasive flow machining process. Int J Mach Tools Manuf 39(12):1903–1923CrossRef
8.
Zurück zum Zitat Singh S, Shan HS, Kumar P (2008) Experimental studies on mechanism of material removal in abrasive flow machining process. Mater Manuf Process 23(7):714–718CrossRef Singh S, Shan HS, Kumar P (2008) Experimental studies on mechanism of material removal in abrasive flow machining process. Mater Manuf Process 23(7):714–718CrossRef
9.
Zurück zum Zitat Jain VK, Adsul SG (2000) Experimental investigations into abrasive flow machining (AFM). Int J Mach Tools Manuf 40(7):1003–1021CrossRef Jain VK, Adsul SG (2000) Experimental investigations into abrasive flow machining (AFM). Int J Mach Tools Manuf 40(7):1003–1021CrossRef
10.
Zurück zum Zitat Gorana VK, Jain VK, Lal GK (2004) Experimental investigation into cutting forces and active grain density during abrasive flow machining. Int J Mach Tools Manuf 44(2):201–211CrossRef Gorana VK, Jain VK, Lal GK (2004) Experimental investigation into cutting forces and active grain density during abrasive flow machining. Int J Mach Tools Manuf 44(2):201–211CrossRef
11.
Zurück zum Zitat Munhoz MR, Dias LG, Breganon R et al (2020) Analysis of the surface roughness obtained by the abrasive flow machining process using an abrasive paste with oiticica oil. Int J Adv Manuf Tech 106(11/12):5061–5070CrossRef Munhoz MR, Dias LG, Breganon R et al (2020) Analysis of the surface roughness obtained by the abrasive flow machining process using an abrasive paste with oiticica oil. Int J Adv Manuf Tech 106(11/12):5061–5070CrossRef
12.
Zurück zum Zitat Bremerstein T, Potthoff A, Michaelis A et al (2015) Wear of abrasive media and its effect on abrasive flow machining results. Wear 342:44–51CrossRef Bremerstein T, Potthoff A, Michaelis A et al (2015) Wear of abrasive media and its effect on abrasive flow machining results. Wear 342:44–51CrossRef
13.
Zurück zum Zitat Sankar RM, Jain VK, Ramkumar J et al (2011) Rheological characterization of styrene-butadiene based medium and its finishing performance using rotational abrasive flow finishing process. Int J Adv Manuf Tech 51(12):947–957 Sankar RM, Jain VK, Ramkumar J et al (2011) Rheological characterization of styrene-butadiene based medium and its finishing performance using rotational abrasive flow finishing process. Int J Adv Manuf Tech 51(12):947–957
14.
Zurück zum Zitat Dong Z, Ya G, Liu J (2017) Study on machining mechanism of high viscoelastic abrasive flow machining for surface finishing. P I Mech Eng B-J Eng Manuf 231(4):608–617CrossRef Dong Z, Ya G, Liu J (2017) Study on machining mechanism of high viscoelastic abrasive flow machining for surface finishing. P I Mech Eng B-J Eng Manuf 231(4):608–617CrossRef
15.
Zurück zum Zitat Tan DP, Ji SM, Fu YZ (2016) An improved soft abrasive flow finishing method based on fluid collision theory. Int J Adv Manuf Tech 85(5):1261–1274CrossRef Tan DP, Ji SM, Fu YZ (2016) An improved soft abrasive flow finishing method based on fluid collision theory. Int J Adv Manuf Tech 85(5):1261–1274CrossRef
16.
Zurück zum Zitat Chen F, Hao S, Miao X et al (2018) Numerical and experimental study on low-pressure abrasive flow polishing of rectangular microgroove. Powder Tech 327:215–222CrossRef Chen F, Hao S, Miao X et al (2018) Numerical and experimental study on low-pressure abrasive flow polishing of rectangular microgroove. Powder Tech 327:215–222CrossRef
17.
Zurück zum Zitat Wan S, Ang YJ, Sato T et al (2014) Process modeling and CFD simulation of two-way abrasive flow machining. Int J Adv Manuf Tech 71(5):1077–1086CrossRef Wan S, Ang YJ, Sato T et al (2014) Process modeling and CFD simulation of two-way abrasive flow machining. Int J Adv Manuf Tech 71(5):1077–1086CrossRef
18.
Zurück zum Zitat Wang AC, Tsai L, Liang KZ et al (2009) Uniform surface polished method of complex holes in abrasive flow machining. T Nonferr Metal Soc 19(1):s250–s257CrossRef Wang AC, Tsai L, Liang KZ et al (2009) Uniform surface polished method of complex holes in abrasive flow machining. T Nonferr Metal Soc 19(1):s250–s257CrossRef
19.
Zurück zum Zitat Uhlmann E, Schmiedel C, Wendler J (2015) CFD simulation of the abrasive flow machining process. Procedia CIRP 31:209–214CrossRef Uhlmann E, Schmiedel C, Wendler J (2015) CFD simulation of the abrasive flow machining process. Procedia CIRP 31:209–214CrossRef
20.
Zurück zum Zitat Fu Y, Gao H, Yan Q et al (2020) Rheological characterisation of abrasive media and finishing behaviours in abrasive flow machining. Int J Adv Manuf Tech 107(7/8):3569–3580CrossRef Fu Y, Gao H, Yan Q et al (2020) Rheological characterisation of abrasive media and finishing behaviours in abrasive flow machining. Int J Adv Manuf Tech 107(7/8):3569–3580CrossRef
21.
Zurück zum Zitat Bowden FP, Moore AJW, Tabor D (1943) The ploughing and adhesion of sliding metals. J Appl Phys 14(2):80–91CrossRef Bowden FP, Moore AJW, Tabor D (1943) The ploughing and adhesion of sliding metals. J Appl Phys 14(2):80–91CrossRef
Metadaten
Titel
Research on the underlying mechanism behind abrasive flow machining on micro-slit structures and simulation of viscoelastic media
verfasst von
Bao-Cai Zhang
Shi-Fei Chen
Nasim Khiabani
Yu Qiao
Xin-Chang Wang
Publikationsdatum
26.05.2022
Verlag
Shanghai University
Erschienen in
Advances in Manufacturing / Ausgabe 3/2022
Print ISSN: 2095-3127
Elektronische ISSN: 2195-3597
DOI
https://doi.org/10.1007/s40436-022-00395-0

Weitere Artikel der Ausgabe 3/2022

Advances in Manufacturing 3/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.