Skip to main content

21.09.2024 | Electrical and Electronics, Vision and Sensors, Other Fields of Automotive Engineering

Research on Traffic Flow Forecasting of Spatio-temporal Convolutional Networks with Auto-correlation

verfasst von: Yuan Yao, Linlong Chen, Xianchen Wang, Xiaojun Wu

Erschienen in: International Journal of Automotive Technology

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Spatial–temporal graph modeling is a significant assignment to analyze the temporal–spatial correlation of traffic flow forecasting models. However, most of the existing methods capture the spatial dependence through the fixed graph structure. The explicit graph structure can hardly reflect the real dependency, and the real relationship may be lost due to incomplete connections in the data. In addition, the existing methods cannot effectively capture the dynamic spatio-temporal correlation and periodicity. To overcome this problem, a traffic flow forecasting model Auto-correlation Spatio-temporal Convolutional Network (Auto-STCN) is proposed, and models the temporal dependence, spatial correlation, and periodicity of traffic flow, respectively. Temporal Convolution Network and Graph Convolution Network are used to extract the temporal dependence and spatial correlation of traffic flow. Auto-correlation is used to calculate the Auto-correlation of the sequence to capture the periodic dependence of traffic flow, and similar subsequences are aggregated by time delay aggregation. An adaptive adjacency matrix is constructed in the Auto-STCN model, and it is learned by node embedding to extract the spatial features of traffic flow dynamics. Experiments on two datasets show that the Auto-STCN model has better prediction performance.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

ATZelectronics worldwide

ATZlectronics worldwide is up-to-speed on new trends and developments in automotive electronics on a scientific level with a high depth of information. 

Order your 30-days-trial for free and without any commitment.

Weitere Produktempfehlungen anzeigen
Literatur
Zurück zum Zitat Bruna, J., Zaremba, W., Szlam, A., & LeCun, Y. (2013). Spectral networks and locally connected networks on graphs. Computer Science. Bruna, J., Zaremba, W., Szlam, A., & LeCun, Y. (2013). Spectral networks and locally connected networks on graphs. Computer Science.
Zurück zum Zitat Defferrard, M., Bresson, X., & Vandergheynst, P. (2016). Convolutional neural networks on graphs with fast localized spectral filtering. Defferrard, M., Bresson, X., & Vandergheynst, P. (2016). Convolutional neural networks on graphs with fast localized spectral filtering.
Zurück zum Zitat Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). BERT: Pre-training of deep bidirectional transformers for language understanding. Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). BERT: Pre-training of deep bidirectional transformers for language understanding.
Zurück zum Zitat Fefferman, N. H., Jagai, J. S., & Naumova, E. N. (2022). Two–stage wavelet analysis assessment of dependencies in time-series of disease incidence. Fefferman, N. H., Jagai, J. S., & Naumova, E. N. (2022). Two–stage wavelet analysis assessment of dependencies in time-series of disease incidence.
Zurück zum Zitat Gao, L., Liu, X., Liu, Y., et al. (2019). Measuring road network topology vulnerability by Ricci curvature. Physica a: Statistical Mechanics and Its Applications, 527, 121071.CrossRef Gao, L., Liu, X., Liu, Y., et al. (2019). Measuring road network topology vulnerability by Ricci curvature. Physica a: Statistical Mechanics and Its Applications, 527, 121071.CrossRef
Zurück zum Zitat Guo, S., Lin, Y., Feng, N., Song, C., & Wan, H. (2019). Attention Based Spatial-Temporal Graph Convolutional Networks for Traffic Flow Forecasting. National Conference on Artificial Intelligence. Guo, S., Lin, Y., Feng, N., Song, C., & Wan, H. (2019). Attention Based Spatial-Temporal Graph Convolutional Networks for Traffic Flow Forecasting. National Conference on Artificial Intelligence.
Zurück zum Zitat Hamilton, J. D. (1994). Time series analysis. Princeton University Press.CrossRef Hamilton, J. D. (1994). Time series analysis. Princeton University Press.CrossRef
Zurück zum Zitat Huang, C., Vaswani, A., Uszkoreit, J., Shazeer, N., Simon, I., Hawthorne, C., Dai, A.M., Hoffman, M.D., Dinculescu, M., & Eck, D. (2018) Music transformer. Huang, C., Vaswani, A., Uszkoreit, J., Shazeer, N., Simon, I., Hawthorne, C., Dai, A.M., Hoffman, M.D., Dinculescu, M., & Eck, D. (2018) Music transformer.
Zurück zum Zitat Huang, Y., Weng, Y., Yu, S., & Chen, X. (2019). Diffusion Convolutional Recurrent Neural Network with Rank Influence Learning for Traffic Forecasting. In 2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). Huang, Y., Weng, Y., Yu, S., & Chen, X. (2019). Diffusion Convolutional Recurrent Neural Network with Rank Influence Learning for Traffic Forecasting. In 2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE).
Zurück zum Zitat Kamarianakis, Y., & Vouton, V. (2003). Forecasting traffic flow conditions in an urban network: Comparison of multivariate and univariate approaches. Transportation Research Record Journal of the Transportation Research Board, 1857, 74–84.CrossRef Kamarianakis, Y., & Vouton, V. (2003). Forecasting traffic flow conditions in an urban network: Comparison of multivariate and univariate approaches. Transportation Research Record Journal of the Transportation Research Board, 1857, 74–84.CrossRef
Zurück zum Zitat Kitaev, N., Kaiser, L., & Levskaya, A. (2020). Reformer: The efficient transformer. Kitaev, N., Kaiser, L., & Levskaya, A. (2020). Reformer: The efficient transformer.
Zurück zum Zitat Li, S., Jin, X., Xuan, Y., Zhou, X., Chen, W., Wang, Y. X., & Yan, X. (2019). Enhancing the locality and breaking the memory bottleneck of transformer on time series forecasting. Li, S., Jin, X., Xuan, Y., Zhou, X., Chen, W., Wang, Y. X., & Yan, X. (2019). Enhancing the locality and breaking the memory bottleneck of transformer on time series forecasting.
Zurück zum Zitat Li, Y., Yu, R., Shahabi, C., & Liu, Y. (2017). Diffusion convolutional recurrent neural network: Data-driven traffic forecasting. Li, Y., Yu, R., Shahabi, C., & Liu, Y. (2017). Diffusion convolutional recurrent neural network: Data-driven traffic forecasting.
Zurück zum Zitat Liu, Q., Wang, B., & Zhu, Y. (2018). Short-term traffic speed forecasting based on attention convolutional neural network for arterials. Computer-Aided Civil and Infrastructure Engineering, 33, 999–1016.CrossRef Liu, Q., Wang, B., & Zhu, Y. (2018). Short-term traffic speed forecasting based on attention convolutional neural network for arterials. Computer-Aided Civil and Infrastructure Engineering, 33, 999–1016.CrossRef
Zurück zum Zitat Liu, Y., Zheng, H., Feng, X., & Chen, Z. (2017). Short-term traffic flow prediction with Conv-LSTM. In 2017 9th International Conference on Wireless Communications and Signal Processing (WCSP). Liu, Y., Zheng, H., Feng, X., & Chen, Z. (2017). Short-term traffic flow prediction with Conv-LSTM. In 2017 9th International Conference on Wireless Communications and Signal Processing (WCSP).
Zurück zum Zitat Micheli, A. (2009). Neural network for graphs: A contextual constructive approach. IEEE Transactions on Neural Networks, 20, 498–511.CrossRef Micheli, A. (2009). Neural network for graphs: A contextual constructive approach. IEEE Transactions on Neural Networks, 20, 498–511.CrossRef
Zurück zum Zitat Oord, A., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., Kalchbrenner, N., Senior, A., & Kavukcuoglu, K. (2016). WaveNet: A generative model for raw audio. Oord, A., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., Kalchbrenner, N., Senior, A., & Kavukcuoglu, K. (2016). WaveNet: A generative model for raw audio.
Zurück zum Zitat Qiao, C. (2021). Short-term traffic flow prediction based on 1DCNN-LSTM neural network structure. Modern Physics Letters, b: Condensed Matter Physics, Statistical Physics, Applied Physics, 35(2), 2150042.MathSciNetCrossRef Qiao, C. (2021). Short-term traffic flow prediction based on 1DCNN-LSTM neural network structure. Modern Physics Letters, b: Condensed Matter Physics, Statistical Physics, Applied Physics, 35(2), 2150042.MathSciNetCrossRef
Zurück zum Zitat Smith, B. L., Williams, B. M., & Oswald, R. K. (2002). Comparison of parametric and nonparametric models for traffic flow forecasting. Transportation Research Part C, 10, 303–321.CrossRef Smith, B. L., Williams, B. M., & Oswald, R. K. (2002). Comparison of parametric and nonparametric models for traffic flow forecasting. Transportation Research Part C, 10, 303–321.CrossRef
Zurück zum Zitat Song, C., Lin, Y., Guo, S., & Wan, H. (2020). Spatial-temporal synchronous graph convolutional networks: A new framework for spatial-temporal network data forecasting. pp. 914–921. Song, C., Lin, Y., Guo, S., & Wan, H. (2020). Spatial-temporal synchronous graph convolutional networks: A new framework for spatial-temporal network data forecasting. pp. 914–921.
Zurück zum Zitat Velikovi, P., Cucurull, G., Casanova, A., Romero, A., Lio, P. & Bengio, Y. (2017). Graph attention networks. Velikovi, P., Cucurull, G., Casanova, A., Romero, A., Lio, P. & Bengio, Y. (2017). Graph attention networks.
Zurück zum Zitat Wu, C. H., Wei, C. C., Su, D. C., Chang, M., Ho, J. (2003). Travel time prediction with support vector regression. In Intelligent Transportation Systems, 2003. Proceedings. 2003 IEEE. Wu, C. H., Wei, C. C., Su, D. C., Chang, M., Ho, J. (2003). Travel time prediction with support vector regression. In Intelligent Transportation Systems, 2003. Proceedings. 2003 IEEE.
Zurück zum Zitat Wu, Y., & Tan, H. (2016). Short-term traffic flow forecasting with spatial-temporal correlation in a hybrid deep learning framework. Wu, Y., & Tan, H. (2016). Short-term traffic flow forecasting with spatial-temporal correlation in a hybrid deep learning framework.
Zurück zum Zitat Wu, Z., Pan, S., Long, G., Jiang, J., & Zhang, C. (2019). Graph wavenet for deep spatial-temporal graph modeling. Wu, Z., Pan, S., Long, G., Jiang, J., & Zhang, C. (2019). Graph wavenet for deep spatial-temporal graph modeling.
Zurück zum Zitat Xu, C., Zhang, A., Xu, C., & Chen, Y. (2022). Traffic speed prediction: spatio-temporal convolution network based on long-term, short-term and spatial features. Applied Intelligence, 52(2), 2224–2242.CrossRef Xu, C., Zhang, A., Xu, C., & Chen, Y. (2022). Traffic speed prediction: spatio-temporal convolution network based on long-term, short-term and spatial features. Applied Intelligence, 52(2), 2224–2242.CrossRef
Zurück zum Zitat Yang, B., Kang, Y., Yuan, Y. Y., et al. (2021). ST-LBAGAN: Spatio-temporal learnable bidirectional attention generative adversarial networks for missing traffic data imputation. Knowledge-Based Systems, 215, 106705.CrossRef Yang, B., Kang, Y., Yuan, Y. Y., et al. (2021). ST-LBAGAN: Spatio-temporal learnable bidirectional attention generative adversarial networks for missing traffic data imputation. Knowledge-Based Systems, 215, 106705.CrossRef
Zurück zum Zitat Yao, H., Fei, W., Ke, J., Tang, X., Jia, Y., Lu, S., Gong, P., Ye, J., & Li, Z. (2018). Deep multi-view spatial-temporal network for taxi demand prediction. Yao, H., Fei, W., Ke, J., Tang, X., Jia, Y., Lu, S., Gong, P., Ye, J., & Li, Z. (2018). Deep multi-view spatial-temporal network for taxi demand prediction.
Zurück zum Zitat Yu, B., Yin, H., & Zhu, Z. (2017). Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting. Yu, B., Yin, H., & Zhu, Z. (2017). Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting.
Zurück zum Zitat Zheng, C., Fan, X., Wen, C., Chen, L., Wang, C., & Li, J. (2019). DeepSTD: Mining spatio-temporal disturbances of multiple context factors for citywide traffic flow prediction. IEEE Transactions on Intelligent Transportation Systems, 21(9), 3744–3755.CrossRef Zheng, C., Fan, X., Wen, C., Chen, L., Wang, C., & Li, J. (2019). DeepSTD: Mining spatio-temporal disturbances of multiple context factors for citywide traffic flow prediction. IEEE Transactions on Intelligent Transportation Systems, 21(9), 3744–3755.CrossRef
Metadaten
Titel
Research on Traffic Flow Forecasting of Spatio-temporal Convolutional Networks with Auto-correlation
verfasst von
Yuan Yao
Linlong Chen
Xianchen Wang
Xiaojun Wu
Publikationsdatum
21.09.2024
Verlag
The Korean Society of Automotive Engineers
Erschienen in
International Journal of Automotive Technology
Print ISSN: 1229-9138
Elektronische ISSN: 1976-3832
DOI
https://doi.org/10.1007/s12239-024-00130-7