Skip to main content

2024 | OriginalPaper | Buchkapitel

Research on Wavelet Packet Sample Entropy Features of sEMG Signal in Lower Limb Movement Recognition

verfasst von : Jianxia Pan, Liu Yang, Xinping Fu, Haicheng Wei, Jing Zhao

Erschienen in: Intelligent Information Processing XII

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In order to extract deeper features from surface electromyography signals and improve the classification accuracy of lower limb movements, a feature extraction method combining wavelet packet and sample entropy (WPT-SampEn) is proposed to accurately identify three types of lower limb movements. The electromyographic signals are preprocessed, which includes Butterworth filtering, activity segment detection based on short-term energy, and normalization processing. A three-layer wavelet packet decomposition method is used to decompose the five electromyographic signals into eight different frequency bands. By calculating the energy proportion in each frequency band, the top four frequency bands are determined as the focus of analysis. The Kruskal-Wallis test is employed to select frequency bands with statistical differences. To validate the effectiveness of this method, the support vector machine (SVM) algorithm is used for lower limb motion classification. Experimental results show that using the wavelet packet sample entropy features of the lateral thigh, medial thigh, rectus femoris, and biceps femoris muscles, the recognition rate reaches up to 96.46%. Compared with existing methods, this approach can extract deeper features from sEMG signals and achieve higher recognition accuracy. It has great potential in areas such as rehabilitation training, wearable exoskeleton control, and daily activity monitoring.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Gao, B., Wei, C., Ma, H., et al.: Real-time evaluation of the signal processing of sEMG used in limb exoskeleton rehabilitation system. Appli. Bionics Biomech. 2018, 1–6 (2018)CrossRef Gao, B., Wei, C., Ma, H., et al.: Real-time evaluation of the signal processing of sEMG used in limb exoskeleton rehabilitation system. Appli. Bionics Biomech. 2018, 1–6 (2018)CrossRef
2.
Zurück zum Zitat Gao, S., Wang, Y., Fang, C., et al.: A smart terrain identification technique based on electromyography, ground reaction force, and machine learning for lower limb rehabilitation. Appl. Sci. 10(8), 2638–2655 (2020)CrossRef Gao, S., Wang, Y., Fang, C., et al.: A smart terrain identification technique based on electromyography, ground reaction force, and machine learning for lower limb rehabilitation. Appl. Sci.  10(8), 2638–2655 (2020)CrossRef
3.
Zurück zum Zitat Zhang, X., Li, J., Ovur, S.E., et al.: Novel design and adaptive fuzzy control of a lower-limb elderly rehabilitation. Electronics 9(2), 343–360 (2020)CrossRef Zhang, X., Li, J., Ovur, S.E., et al.: Novel design and adaptive fuzzy control of a lower-limb elderly rehabilitation. Electronics 9(2), 343–360 (2020)CrossRef
4.
Zurück zum Zitat Bahador, A., Yousefi, M., Marashi, M., et al.: High accurate lightweight deep learning method for gesture recognition based on surface electromyography. Comput. Methods Programs Biomed. 195, 105643–105650 (2020)CrossRef Bahador, A., Yousefi, M., Marashi, M., et al.: High accurate lightweight deep learning method for gesture recognition based on surface electromyography. Comput. Methods Programs Biomed. 195, 105643–105650 (2020)CrossRef
5.
Zurück zum Zitat Vijayvargiya A, Kumar R, Dey N, et al.: Comparative analysis of machine learning techniques for the classification of knee abnormality. In: 2020 IEEE 5th International Conference on Computing Communication and Automation (ICCCA), Greater Noida, India, pp. 1–6. IEEE (2020) Vijayvargiya A, Kumar R, Dey N, et al.: Comparative analysis of machine learning techniques for the classification of knee abnormality. In: 2020 IEEE 5th International Conference on Computing Communication and Automation (ICCCA), Greater Noida, India, pp. 1–6.  IEEE (2020)
6.
Zurück zum Zitat Vijayvargiya, A., Gupta, V., Kumar, R., et al.: A hybrid WD-EEMD sEMG feature extraction technique for lower limb activity recognition IEEE Sens. J. 21(18), 20431–20439 (2021)CrossRef Vijayvargiya, A., Gupta, V., Kumar, R., et al.: A hybrid WD-EEMD sEMG feature extraction technique for lower limb activity recognition  IEEE Sens. J. 21(18), 20431–20439 (2021)CrossRef
7.
Zurück zum Zitat Vijayvargiya A, Khimraj, Kumar R, et al. Voting-based 1D CNN model for human lower limb activity recognition using sEMG signal. Phys. Eng. Sci. Med. 44, 1297–1309 (2021) Vijayvargiya A, Khimraj, Kumar R, et al. Voting-based 1D CNN model for human lower limb activity recognition using sEMG signal. Phys. Eng. Sci. Med. 44, 1297–1309 (2021)
8.
Zurück zum Zitat Ryu, J., Lee, B.H., Kim, D.H.: SEMG signal-based lower limb human motion detection using a top and slope feature extraction algorithm. IEEE Signal Process. Lett. 24(7), 929–932 (2016)CrossRef Ryu, J., Lee, B.H., Kim, D.H.: SEMG signal-based lower limb human motion detection using a top and slope feature extraction algorithm. IEEE Signal Process. Lett. 24(7), 929–932 (2016)CrossRef
9.
Zurück zum Zitat Javaid, H.A., Rashid, N., Tiwana M.I., et al.: Comparative analysis of emg signal features in time-domain and frequency-domain using myo gesture control. In: Proceedings of the 2018 4th International Conference on Mechatronics and Robotics Engineering, Valenciennes, France: ICMRE, pp. 157–162 (2018) Javaid, H.A., Rashid, N., Tiwana M.I., et al.: Comparative analysis of emg signal features in time-domain and frequency-domain using myo gesture control. In: Proceedings of the 2018 4th International Conference on Mechatronics and Robotics Engineering, Valenciennes, France: ICMRE, pp.  157–162 (2018)
10.
Zurück zum Zitat Spiewak, C., Islam, M., Zaman, A., et al.: A comprehensive study on EMG feature extraction and classifiers. Open Access J. Biomed. Eng. Biosci. 1(1), 1–10 (2018) Spiewak, C., Islam, M., Zaman, A., et al.: A comprehensive study on EMG feature extraction and classifiers. Open Access J. Biomed. Eng. Biosci. 1(1), 1–10 (2018)
11.
Zurück zum Zitat Nishad, A., Upadhyay, A., Pachori, R.B., et al.: Automated classification of hand movements using tunable-Q wavelet transform based filter-bank with surface electromyogram signals. Futur. Gener. Comput. Syst. 93, 96–110 (2019)CrossRef Nishad, A., Upadhyay, A., Pachori, R.B., et al.: Automated classification of hand movements using tunable-Q wavelet transform based filter-bank with surface electromyogram signals. Futur. Gener. Comput. Syst. 93, 96–110 (2019)CrossRef
12.
Zurück zum Zitat Xi, X., Yang, C., Shi, J., et al.: Surface electromyography-based daily activity recognition using wavelet coherence coefficient and support vector machine. Neural. Process. Lett. 50, 2265–2280 (2019)CrossRef Xi, X., Yang, C., Shi, J., et al.: Surface electromyography-based daily activity recognition using wavelet coherence coefficient and support vector machine. Neural. Process. Lett. 50, 2265–2280 (2019)CrossRef
13.
Zurück zum Zitat Wei, C., Wang, H., Zhou, B., et al.: SEMG signal-based lower limb movements recognition using tunable Q-factor wavelet transform and Kraskov entropy. IRBM 44(4), 100773–100788 (2023)CrossRef Wei, C., Wang, H., Zhou, B., et al.: SEMG signal-based lower limb movements recognition using tunable Q-factor wavelet transform and Kraskov entropy. IRBM 44(4), 100773–100788 (2023)CrossRef
14.
Zurück zum Zitat Zhang, X., Zhou, P.: Myoelectric pattern identification of stroke survivors using multivariate empirical mode decomposition. J. Healthcare Eng. 5, 261–274 (2014)CrossRef Zhang, X., Zhou, P.: Myoelectric pattern identification of stroke survivors using multivariate empirical mode decomposition. J. Healthcare Eng. 5, 261–274 (2014)CrossRef
15.
Zurück zum Zitat Savithri,C.N., Priya, E., Rajasekar, K.: A machine learning approach to identify hand actions from single-channel sEMG signals. Biomedical Engineering/Biomedizinische Technik 67(2), 89–103 (2022) Savithri,C.N., Priya, E., Rajasekar, K.: A machine learning approach to identify hand actions from single-channel sEMG signals. Biomedical Engineering/Biomedizinische Technik 67(2), 89–103 (2022)
16.
Zurück zum Zitat Sukumar, N., Taran, S., Bajaj, V.: Physical actions classification of surface EMG signals using VMD. In: 2018 International Conference on Communication and Signal Processing (ICCSP), Chennai, India, pp. 0705–0709. IEEE (2018) Sukumar, N., Taran, S., Bajaj, V.: Physical actions classification of surface EMG signals using VMD. In: 2018 International Conference on Communication and Signal Processing (ICCSP), Chennai, India, pp. 0705–0709.  IEEE (2018)
17.
Zurück zum Zitat Xiao, F., Yang, D., Lv, Z., et al.: Classification of hand movements using variational mode decomposition and composite permutation entropy index with surface electromyogram signals. Futur. Gener. Comput. Syst. 110, 1023–1036 (2020)CrossRef Xiao, F., Yang, D., Lv, Z., et al.: Classification of hand movements using variational mode decomposition and composite permutation entropy index with surface electromyogram signals. Futur. Gener. Comput. Syst. 110, 1023–1036 (2020)CrossRef
18.
Zurück zum Zitat Kosmidou, V.E., Hadjileontiadis, L.J.: Sign language recognition using intrinsic-mode sample entropy on sEMG and accelerometer data. IEEE Trans. Biomed. Eng. 56(12), 2879–2890 (2009)CrossRef Kosmidou, V.E., Hadjileontiadis, L.J.: Sign language recognition using intrinsic-mode sample entropy on sEMG and accelerometer data. IEEE Trans. Biomed. Eng. 56(12), 2879–2890 (2009)CrossRef
19.
Zurück zum Zitat Yu, Y.: Research on athlete skipping surface electromyography and energy consumption based on principal component analysis of wavelet packet J. Intell. Fuzzy Syst. 40(2), 2217–2227 (2021)CrossRef Yu, Y.: Research on athlete skipping surface electromyography and energy consumption based on principal component analysis of wavelet packet  J. Intell. Fuzzy Syst. 40(2), 2217–2227 (2021)CrossRef
20.
Zurück zum Zitat Xu, B., Wu, Q., Xi, C., et al.: Recognition of the fatigue status of pilots using BF–PSO optimized multi-class GP classification with sEMG signals. Reliab. Eng. Syst. Saf. 199, 106930–106951 (2020)CrossRef Xu, B., Wu, Q., Xi, C., et al.: Recognition of the fatigue status of pilots using BF–PSO optimized multi-class GP classification with sEMG signals. Reliab. Eng. Syst. Saf. 199, 106930–106951 (2020)CrossRef
Metadaten
Titel
Research on Wavelet Packet Sample Entropy Features of sEMG Signal in Lower Limb Movement Recognition
verfasst von
Jianxia Pan
Liu Yang
Xinping Fu
Haicheng Wei
Jing Zhao
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-57808-3_35