Skip to main content

2017 | OriginalPaper | Buchkapitel

7. Reservoir Evaluation by DFA Measurements and Thermodynamic Analysis

verfasst von : Go Fujisawa, Oliver C. Mullins

Erschienen in: Springer Handbook of Petroleum Technology

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Downhole fluid analysis (DFA) has enabled the cost-effective measurement in oil wells of a variety of chemical properties of reservoir crude oils. An immediate benefit of DFA is the improvement of the sample quality of the reservoir fluid in the subsurface environment. In addition, this early feedback on the nature of the reservoir fluid aids in understanding key reservoir challenges. DFA also enables the accurate determination of fluid gradients in the reservoir in both vertical and lateral directions. These gradients can then be analyzed in a thermodynamic equation of state (EoS) context; the gas-liquid properties can be modeled with the cubic EoS and the asphaltene gradients equilibrium can be modeled with the Flory–Huggins–Zuo (FHZ) EoS with its reliance on the Yen–Mullins model of asphaltenes. Time-dependent processes in geologic time can be modeled by adding appropriate dynamic terms to the EoS. Simple thermodynamic models can then be used to understand distributions of key fluid properties for reservoir crude oils and aid in simulating production. This thermodynamic analysis of the geodynamics of reservoir fluids fills a gap in the industry's modeling of reservoir fluids. Traditional basin modeling predicts what fluids enter the reservoir. This new geodynamic modeling coupled with DFA measurements determines what transpired in geologic time in regards to fluid distributions within the reservoir. The output of this fluid geodynamic modeling can then be used as input for traditional reservoir simulation for production. This new understanding of reservoir fluid geodynamics is made possible by new DFA measurements coupled with new FHZ EoS with the Yen–Mullins model.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
7.1
Zurück zum Zitat W.D. McCain: The Properties of Petroleum Fluids (PennWell, Tulsa 1990) W.D. McCain: The Properties of Petroleum Fluids (PennWell, Tulsa 1990)
7.2
Zurück zum Zitat O.C. Mullins: The Physics of Reservoir Fluids: Discovery Through Downhole Fluid Analysis (Schlumberger, Houston 2008) O.C. Mullins: The Physics of Reservoir Fluids: Discovery Through Downhole Fluid Analysis (Schlumberger, Houston 2008)
7.3
Zurück zum Zitat O.C. Mullins, K. Wang, D. Hernandez, A.E. Pomerantz, J.Y. Zuo, P.S. Hammond, C. Dong, H. Elshahawi, D.J. Seifert: Characterization of asphaltene transport over geologic time aids in explaining the distribution of heavy oils and solid hydrocarbons in reservoirs, SPE ATCE 170730 (2014) O.C. Mullins, K. Wang, D. Hernandez, A.E. Pomerantz, J.Y. Zuo, P.S. Hammond, C. Dong, H. Elshahawi, D.J. Seifert: Characterization of asphaltene transport over geologic time aids in explaining the distribution of heavy oils and solid hydrocarbons in reservoirs, SPE ATCE 170730 (2014)
7.4
Zurück zum Zitat T.H. Zimmerman, J.J. Pop, J.L. Perkins: Down hole tool for determination of formation properties, US Patent 4860581 (1989) T.H. Zimmerman, J.J. Pop, J.L. Perkins: Down hole tool for determination of formation properties, US Patent 4860581 (1989)
7.5
Zurück zum Zitat O.C. Mullins, E.Y. Sheu, A. Hammami, A.G. Marshall (Eds.): Asphaltenes, Heavy Oil and Petroleomics (Springer, New York 2007) O.C. Mullins, E.Y. Sheu, A. Hammami, A.G. Marshall (Eds.): Asphaltenes, Heavy Oil and Petroleomics (Springer, New York 2007)
7.6
Zurück zum Zitat O.C. Mullins: The modified Yen model, Energ. Fuels 24, 2179–2207 (2010)CrossRef O.C. Mullins: The modified Yen model, Energ. Fuels 24, 2179–2207 (2010)CrossRef
7.7
Zurück zum Zitat D.E. Freed, O.C. Mullins, J.Y. Zuo: Asphaltene gradients in the presence of GOR gradients, Energ. Fuels 24(7), 3942–3949 (2010)CrossRef D.E. Freed, O.C. Mullins, J.Y. Zuo: Asphaltene gradients in the presence of GOR gradients, Energ. Fuels 24(7), 3942–3949 (2010)CrossRef
7.8
Zurück zum Zitat J.Y. Zuo, O.C. Mullins, D.E. Freed, C. Dong, H. Elshahawi, D.J. Seifert: Advances of the Flory–Huggins–Zuo equation of state for asphaltene gradients and formation evaluation, Energ. Fuels 27, 1722–1735 (2013)CrossRef J.Y. Zuo, O.C. Mullins, D.E. Freed, C. Dong, H. Elshahawi, D.J. Seifert: Advances of the Flory–Huggins–Zuo equation of state for asphaltene gradients and formation evaluation, Energ. Fuels 27, 1722–1735 (2013)CrossRef
7.9
Zurück zum Zitat B. Raghuraman, G. Gustavson, O.C. Mullins, P. Rabbito: Spectroscopic pH measurement for high temperatures, pressures and ionic strength, AIChE Journal 52, 3257 (2006)CrossRef B. Raghuraman, G. Gustavson, O.C. Mullins, P. Rabbito: Spectroscopic pH measurement for high temperatures, pressures and ionic strength, AIChE Journal 52, 3257 (2006)CrossRef
7.10
Zurück zum Zitat G. Fujisawa, M.A. van Agthoven, F. Jenet, P.A. Rabbito, O.C. Mullins: Near-infrared compositional analysis of gas and condensate reservoir fluids at elevated pressures and temperatures, Appl. Spectrosc. 56(12), 1615–1620 (2002)CrossRef G. Fujisawa, M.A. van Agthoven, F. Jenet, P.A. Rabbito, O.C. Mullins: Near-infrared compositional analysis of gas and condensate reservoir fluids at elevated pressures and temperatures, Appl. Spectrosc. 56(12), 1615–1620 (2002)CrossRef
7.11
Zurück zum Zitat A.R. Smits, D.V. Fincher, K. Nishida, O.C. Mullins, R.J. Schroeder, T. Yamate: In situ optical fluid analysis as an aid to wireline formtion sampling, SPE Form, Evaluation 10(2), 91–98 (1995) A.R. Smits, D.V. Fincher, K. Nishida, O.C. Mullins, R.J. Schroeder, T. Yamate: In situ optical fluid analysis as an aid to wireline formtion sampling, SPE Form, Evaluation 10(2), 91–98 (1995)
7.12
Zurück zum Zitat C. Avant, S. Daungkaew, B.K. Behera, S. Danpanich, W. Laprabang, I. De Santo, G. Heath, K. Osman, Z.A. Khan, J. Russel, P. Sims, M. Slapal, G. Tevis: Testing the limits in extreme well conditions, Oilfield Rev. 24(3), 4–19 (2012) C. Avant, S. Daungkaew, B.K. Behera, S. Danpanich, W. Laprabang, I. De Santo, G. Heath, K. Osman, Z.A. Khan, J. Russel, P. Sims, M. Slapal, G. Tevis: Testing the limits in extreme well conditions, Oilfield Rev. 24(3), 4–19 (2012)
7.13
Zurück zum Zitat V. Achourov, A. Gisolf, A. Kansy, K.O. Eriksen, M. O'Keefe, T. Pfeiffer: Applications of accurate in-situ fluid analysis in the North Sea, SPE 145643, Aberdeen (2011) V. Achourov, A. Gisolf, A. Kansy, K.O. Eriksen, M. O'Keefe, T. Pfeiffer: Applications of accurate in-situ fluid analysis in the North Sea, SPE 145643, Aberdeen (2011)
7.14
Zurück zum Zitat O.C. Mullins, J.Y. Zuo, D. Seifert, M. Zeybek: Clusters of asphaltene nanoaggregates observed in oil reservoirs, Energ. Fuels 27, 1752–1761 (2013)CrossRef O.C. Mullins, J.Y. Zuo, D. Seifert, M. Zeybek: Clusters of asphaltene nanoaggregates observed in oil reservoirs, Energ. Fuels 27, 1752–1761 (2013)CrossRef
7.15
Zurück zum Zitat T. Pfeiffer, Z. Reza, W.D. McCain, D. Schechter, O.C. Mullins: Determination of fluid composition equilibrium – A substantially superior way to assess reservoir connectivity than formation pressure surveys, Proc. SPWLA, Annu. Symp., SPWLA-2011-EEE, Colorado Springs (2011) T. Pfeiffer, Z. Reza, W.D. McCain, D. Schechter, O.C. Mullins: Determination of fluid composition equilibrium – A substantially superior way to assess reservoir connectivity than formation pressure surveys, Proc. SPWLA, Annu. Symp., SPWLA-2011-EEE, Colorado Springs (2011)
7.16
Zurück zum Zitat D.J. Seifert, M. Zeybek, C. Dong, J.Y. Zuo, O.C. Mullins: Black oil, heavy oil and tar mats, ADIPEC 161144, Abu Dhabi (2012) D.J. Seifert, M. Zeybek, C. Dong, J.Y. Zuo, O.C. Mullins: Black oil, heavy oil and tar mats, ADIPEC 161144, Abu Dhabi (2012)
7.17
Zurück zum Zitat K. Wang, Y. Chen, J.Y. Zuo, O.C. Mullins: The dynamic Flory--Huggins--Zuo equation of state, Energy 91, 430–440 (2015)CrossRef K. Wang, Y. Chen, J.Y. Zuo, O.C. Mullins: The dynamic Flory--Huggins--Zuo equation of state, Energy 91, 430–440 (2015)CrossRef
7.18
Zurück zum Zitat R. Jackson, J.Y. Zuo, A. Agarwal, B. Herold, S. Kumar, I. De Santo, H. Dumont, C. Ayan, O.C. Mullins: Mapping and modelling large viscosity and asphaltene variations in a reservoir undergoing active biodegradation, SPE ATCE 170794, Amsterdam (2014) R. Jackson, J.Y. Zuo, A. Agarwal, B. Herold, S. Kumar, I. De Santo, H. Dumont, C. Ayan, O.C. Mullins: Mapping and modelling large viscosity and asphaltene variations in a reservoir undergoing active biodegradation, SPE ATCE 170794, Amsterdam (2014)
7.19
Zurück zum Zitat J.Y. Zuo, R. Jackson, A. Agarwal, B. Herold, S. Kumar, I. De Santo, H. Dumont, M. Beardsell, O.C. Mullins, C. Ayan: Diffusion model coupled with the Flory–Huggins–Zuo equation of state and Yen–Mullins model accounts for large viscosity and asphaltene variations in a reservoir undergoing active biodegradation, Energ. Fuels 29(3), 1447–1460 (2015)CrossRef J.Y. Zuo, R. Jackson, A. Agarwal, B. Herold, S. Kumar, I. De Santo, H. Dumont, M. Beardsell, O.C. Mullins, C. Ayan: Diffusion model coupled with the Flory–Huggins–Zuo equation of state and Yen–Mullins model accounts for large viscosity and asphaltene variations in a reservoir undergoing active biodegradation, Energ. Fuels 29(3), 1447–1460 (2015)CrossRef
7.20
Zurück zum Zitat B.N. Naidu, V. Kothari, N.J. Whitely, J. Guttormsen, S.D. Burley: Calibrated basin modelling to understand hydrocarbon distribution in Barmer Basin, India, Proc. AAPG Int. Conv. Exhib., Singapore (2012) B.N. Naidu, V. Kothari, N.J. Whitely, J. Guttormsen, S.D. Burley: Calibrated basin modelling to understand hydrocarbon distribution in Barmer Basin, India, Proc. AAPG Int. Conv. Exhib., Singapore (2012)
7.21
Zurück zum Zitat I.M. Head, D.M. Jones, S.R. Larter: Biological activity in the deep subsurface and the origin of heavy oil, Nature 426, 344–352 (2003)CrossRef I.M. Head, D.M. Jones, S.R. Larter: Biological activity in the deep subsurface and the origin of heavy oil, Nature 426, 344–352 (2003)CrossRef
Metadaten
Titel
Reservoir Evaluation by DFA Measurements and Thermodynamic Analysis
verfasst von
Go Fujisawa
Oliver C. Mullins
Copyright-Jahr
2017
Verlag
Springer International Publishing
DOI
https://doi.org/10.1007/978-3-319-49347-3_7