Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

01.10.2015 | Ausgabe 13/2015

Water Resources Management 13/2015

Reservoir Inflow Forecasting Using Ensemble Models Based on Neural Networks, Wavelet Analysis and Bootstrap Method

Zeitschrift:
Water Resources Management > Ausgabe 13/2015
Autoren:
Sanjeet Kumar, Mukesh Kumar Tiwari, Chandranath Chatterjee, Ashok Mishra

Abstract

Accurate and reliable forecasting of reservoir inflow is necessary for efficient and effective water resources planning and management. The aim of this study is to develop an ensemble modeling approach based on wavelet analysis, bootstrap resampling and neural networks (BWANN) for reservoir inflow forecasting. In this study, performance of BWANN model is also compared with wavelet based ANN (WANN), wavelet based MLR (WMLR), bootstrap and wavelet analysis based multiple linear regression models (BWMLR), standard ANN, and standard multiple linear regression (MLR) models for inflow forecasting. Robust ANN and WANN models are ensured considering state of the art methodologies in the field. For development of WANN models, initially original time series data is decomposed using wavelet transformation, and wavelet sub-time series are considered to develop WANN models instead of standard data used for development of ANN model. To ensure a robust WANN model different types of wavelet functions are utilized. Further, a comparative analysis is carried out among different approaches of WANN model development using wavelet sub time series. Seven years of reservoir inflow data along with outflow data from two upstream reservoirs in the Damodar catchment along with rainfall data of 5 upstream rain gauge stations are considered in this study. Out of 7 years daily data, 5 years data are used for training the model, 1 year data are used for cross-validation and remaining 1 year data are used to evaluate the performance of the developed models. Different performance indices indicated better performance of WANN model in comparison with WMLR, ANN and MLR models for inflow forecasting. This study demonstrated the effectiveness of proper selection of wavelet functions and appropriate methodology for wavelet based model development. Moreover, performance of BWANN models is found better than BWMLR model for uncertainty assessment, and is found that instead of point predictions, range of forecast will be more reliable, accurate and can be very helpful for operational inflow forecasting.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 13/2015

Water Resources Management 13/2015 Zur Ausgabe