Skip to main content
Erschienen in: Journal of Electroceramics 1-4/2017

30.09.2017

Resistive switching memory using biomaterials

verfasst von: Niloufar Raeis-Hosseini, Jang-Sik Lee

Erschienen in: Journal of Electroceramics | Ausgabe 1-4/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Resistive switching memory (ReRAM) is emerging as a developed technology for a new generation of non-volatile memory devices. Natural organic biomaterials are potential elements of environmentally-benign, biocompatible, and biodegradable electronic devices for information storage and resorbable medical implants. Here, we highlight progress in exploiting biomaterials to fabricate a special category of bio-nanoelectronic memories called biodegradable resistive random access memory (bio-ReRAM). Bio-ReRAMs are beneficial because they are non-toxic and environmentally benign. Various types of biomaterials with their chemical compound, bio-ReRAM device design and structure, their relevance resistive switching (RS) behavior, and conduction mechanism are considered in detail. Particularly, we report physically-transient devices, their corresponding switching mechanism, and their dissolution by immersion in water. Finally, we review recent progress in the development of various types of flexible bio-ReRAMs, focusing on their flexibility and reliability as bendable nanoelectronics. Because most of these devices are candidates to become wearable, skin-compatible, and even digestible smart electronics, we discuss the future improvement of natural materials and the perspective of novel bio-ReRAMs.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat B. Zhu, H. Wang, W. Leow, Y. Cai, X. Loh, M. Han, X. Chen, Silk Fibroin for Flexible Electronic Devices. Adv. Mater. (Deerfield Beach, Fla) 28(22), 4250–4265 (2016)CrossRef B. Zhu, H. Wang, W. Leow, Y. Cai, X. Loh, M. Han, X. Chen, Silk Fibroin for Flexible Electronic Devices. Adv. Mater. (Deerfield Beach, Fla) 28(22), 4250–4265 (2016)CrossRef
2.
Zurück zum Zitat S.R. Forrest, The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428(6986), 911–918 (2004)CrossRef S.R. Forrest, The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428(6986), 911–918 (2004)CrossRef
3.
Zurück zum Zitat D.-H. Kim, J.-H. Ahn, W.M. Choi, H.-S. Kim, T.-H. Kim, J. Song, Y.Y. Huang, Z. Liu, C. Lu, J.A. Rogers, Stretchable and foldable silicon integrated circuits. Science 320(5875), 507–511 (2008)CrossRef D.-H. Kim, J.-H. Ahn, W.M. Choi, H.-S. Kim, T.-H. Kim, J. Song, Y.Y. Huang, Z. Liu, C. Lu, J.A. Rogers, Stretchable and foldable silicon integrated circuits. Science 320(5875), 507–511 (2008)CrossRef
4.
Zurück zum Zitat Q.-D. Ling, D.-J. Liaw, C. Zhu, D.S.-H. Chan, E.-T. Kang, K.-G. Neoh, Polymer electronic memories: Materials, devices and mechanisms. Prog. Polym. Sci. 33(10), 917–978 (2008)CrossRef Q.-D. Ling, D.-J. Liaw, C. Zhu, D.S.-H. Chan, E.-T. Kang, K.-G. Neoh, Polymer electronic memories: Materials, devices and mechanisms. Prog. Polym. Sci. 33(10), 917–978 (2008)CrossRef
5.
Zurück zum Zitat Y. Zhou, S.-T. Han, Y. Yan, L. Zhou, L.-B. Huang, J. Zhuang, P. Sonar, V. Roy, Ultra-flexible nonvolatile memory based on donor-acceptor diketopyrrolopyrrole polymer blends. Sci. Rep. 5, 10683 (2015) Y. Zhou, S.-T. Han, Y. Yan, L. Zhou, L.-B. Huang, J. Zhuang, P. Sonar, V. Roy, Ultra-flexible nonvolatile memory based on donor-acceptor diketopyrrolopyrrole polymer blends. Sci. Rep. 5, 10683 (2015)
6.
Zurück zum Zitat H. Tao, D.L. Kaplan, F.G. Omenetto, Silk materials–a road to sustainable high technology. Adv. Mater. 24(21), 2824–2837 (2012)CrossRef H. Tao, D.L. Kaplan, F.G. Omenetto, Silk materials–a road to sustainable high technology. Adv. Mater. 24(21), 2824–2837 (2012)CrossRef
7.
Zurück zum Zitat D.-H. Kim, J. Viventi, J.J. Amsden, J. Xiao, L. Vigeland, Y.-S. Kim, J.A. Blanco, B. Panilaitis, E.S. Frechette, D. Contreras, Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat. Mater. 9(6), 511–517 (2010)CrossRef D.-H. Kim, J. Viventi, J.J. Amsden, J. Xiao, L. Vigeland, Y.-S. Kim, J.A. Blanco, B. Panilaitis, E.S. Frechette, D. Contreras, Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat. Mater. 9(6), 511–517 (2010)CrossRef
8.
Zurück zum Zitat S.-W. Hwang, H. Tao, D.-H. Kim, H. Cheng, J.-K. Song, E. Rill, M.A. Brenckle, B. Panilaitis, S.M. Won, Y.-S. Kim, A physically transient form of silicon electronics. Science 337(6102), 1640–1644 (2012)CrossRef S.-W. Hwang, H. Tao, D.-H. Kim, H. Cheng, J.-K. Song, E. Rill, M.A. Brenckle, B. Panilaitis, S.M. Won, Y.-S. Kim, A physically transient form of silicon electronics. Science 337(6102), 1640–1644 (2012)CrossRef
9.
Zurück zum Zitat H. Wang, F. Meng, B. Zhu, W.R. Leow, Y. Liu, X. Chen, Resistive switching memory devices based on proteins. Adv. Mater. 27(46), 7670–7676 (2015)CrossRef H. Wang, F. Meng, B. Zhu, W.R. Leow, Y. Liu, X. Chen, Resistive switching memory devices based on proteins. Adv. Mater. 27(46), 7670–7676 (2015)CrossRef
10.
Zurück zum Zitat M. Irimia-Vladu, P.A. Troshin, M. Reisinger, L. Shmygleva, Y. Kanbur, G. Schwabegger, M. Bodea, R. Schwödiauer, A. Mumyatov, J.W. Fergus, Biocompatible and biodegradable materials for organic field-effect transistors. Adv. Funct. Mater. 20(23), 4069–4076 (2010)CrossRef M. Irimia-Vladu, P.A. Troshin, M. Reisinger, L. Shmygleva, Y. Kanbur, G. Schwabegger, M. Bodea, R. Schwödiauer, A. Mumyatov, J.W. Fergus, Biocompatible and biodegradable materials for organic field-effect transistors. Adv. Funct. Mater. 20(23), 4069–4076 (2010)CrossRef
11.
Zurück zum Zitat M. Irimia-Vladu, E.D. Głowacki, G. Voss, S. Bauer, N.S. Sariciftci, Green and biodegradable electronics. Mater. Today 15(7), 340–346 (2012)CrossRef M. Irimia-Vladu, E.D. Głowacki, G. Voss, S. Bauer, N.S. Sariciftci, Green and biodegradable electronics. Mater. Today 15(7), 340–346 (2012)CrossRef
12.
Zurück zum Zitat Y.-W. Kwon, C.H. Lee, D.-H. Choi, J.-I. Jin, Materials science of DNA. J. Mater. Chem. 19(10), 1353–1380 (2009)CrossRef Y.-W. Kwon, C.H. Lee, D.-H. Choi, J.-I. Jin, Materials science of DNA. J. Mater. Chem. 19(10), 1353–1380 (2009)CrossRef
13.
Zurück zum Zitat R. Waser, R. Dittmann, G. Staikov, K. Szot, Redox-based resistive switching memories–nanoionic mechanisms, prospects, and challenges. Adv. Mater. 21 (25-26), 2632–2663 (2009) R. Waser, R. Dittmann, G. Staikov, K. Szot, Redox-based resistive switching memories–nanoionic mechanisms, prospects, and challenges. Adv. Mater. 21 (25-26), 2632–2663 (2009)
14.
Zurück zum Zitat N.R. Hosseini, J.S. Lee, Biocompatible and flexible chitosan-based resistive switching memory with magnesium electrodes. Adv. Funct. Mater. 25(35), 5586–5592 (2015)CrossRef N.R. Hosseini, J.S. Lee, Biocompatible and flexible chitosan-based resistive switching memory with magnesium electrodes. Adv. Funct. Mater. 25(35), 5586–5592 (2015)CrossRef
15.
Zurück zum Zitat N. Raeis-Hosseini, J.-S. Lee, Controlling the resistive switching behavior in starch-based flexible Biomemristors. ACS Appl Mater Interfaces 8(11), 7326–7332 (2016)CrossRef N. Raeis-Hosseini, J.-S. Lee, Controlling the resistive switching behavior in starch-based flexible Biomemristors. ACS Appl Mater Interfaces 8(11), 7326–7332 (2016)CrossRef
16.
Zurück zum Zitat H.N. Raeis, J. Lee, Resistive switching memory based on bioinspired natural solid polymer electrolytes. ACS Nano 9(1), 419–426 (2015)CrossRef H.N. Raeis, J. Lee, Resistive switching memory based on bioinspired natural solid polymer electrolytes. ACS Nano 9(1), 419–426 (2015)CrossRef
17.
Zurück zum Zitat K. Nagashima, H. Koga, U. Celano, F. Zhuge, M. Kanai, S. Rahong, G. Meng, Y. He, J. De Boeck, M. Jurczak, Cellulose nanofiber paper as an ultra flexible nonvolatile memory. Sci Rep 4, 5532 (2014) K. Nagashima, H. Koga, U. Celano, F. Zhuge, M. Kanai, S. Rahong, G. Meng, Y. He, J. De Boeck, M. Jurczak, Cellulose nanofiber paper as an ultra flexible nonvolatile memory. Sci Rep 4, 5532 (2014)
18.
Zurück zum Zitat Y.-C. Hung, W.-T. Hsu, T.-Y. Lin, L. Fruk, Photoinduced write-once read-many-times memory device based on DNA biopolymer nanocomposite. Appl Phys Lett 99(25), 253301 (2011)CrossRef Y.-C. Hung, W.-T. Hsu, T.-Y. Lin, L. Fruk, Photoinduced write-once read-many-times memory device based on DNA biopolymer nanocomposite. Appl Phys Lett 99(25), 253301 (2011)CrossRef
19.
Zurück zum Zitat Y.-C. Chang, Y.-H. Wang, Resistive switching behavior in gelatin thin films for nonvolatile memory application. ACS Appl Mater Interfaces 6(8), 5413–5421 (2014)CrossRef Y.-C. Chang, Y.-H. Wang, Resistive switching behavior in gelatin thin films for nonvolatile memory application. ACS Appl Mater Interfaces 6(8), 5413–5421 (2014)CrossRef
20.
Zurück zum Zitat Y.-C. Chen, H.-C. Yu, C.-Y. Huang, W.-L. Chung, S.-L. Wu, Y.-K. Su, Nonvolatile Bio-Memristor Fabricated with Egg Albumen Film. Sci. Rep. 5, 10022 (2015) Y.-C. Chen, H.-C. Yu, C.-Y. Huang, W.-L. Chung, S.-L. Wu, Y.-K. Su, Nonvolatile Bio-Memristor Fabricated with Egg Albumen Film. Sci. Rep. 5, 10022 (2015)
21.
Zurück zum Zitat X. He, J. Zhang, W. Wang, W. Xuan, X. Wang, Q. Zhang, C.G. Smith, J. Luo, Transient resistive switching devices made from egg albumen dielectrics and dissolvable electrodes. ACS Appl Mater Interfaces 8(17), 10954–10960 (2016)CrossRef X. He, J. Zhang, W. Wang, W. Xuan, X. Wang, Q. Zhang, C.G. Smith, J. Luo, Transient resistive switching devices made from egg albumen dielectrics and dissolvable electrodes. ACS Appl Mater Interfaces 8(17), 10954–10960 (2016)CrossRef
22.
Zurück zum Zitat M.K. Hota, M.K. Bera, B. Kundu, S.C. Kundu, C.K. Maiti, A natural silk fibroin protein-based transparent bio-Memristor. Adv Funct Mater 22(21), 4493–4499 (2012)CrossRef M.K. Hota, M.K. Bera, B. Kundu, S.C. Kundu, C.K. Maiti, A natural silk fibroin protein-based transparent bio-Memristor. Adv Funct Mater 22(21), 4493–4499 (2012)CrossRef
23.
Zurück zum Zitat C. Mukherjee, M. Hota, D. Naskar, S. Kundu, C. Maiti, Resistive switching in natural silk fibroin protein-based bio-memristors. Phys Status Solidi A 210(9), 1797–1805 (2013) C. Mukherjee, M. Hota, D. Naskar, S. Kundu, C. Maiti, Resistive switching in natural silk fibroin protein-based bio-memristors. Phys Status Solidi A 210(9), 1797–1805 (2013)
24.
Zurück zum Zitat B. Sun, D. Liang, X. Li, P. Chen, Nonvolatile bio-memristor fabricated with natural bio-materials from spider silk. J Mater Sci Mater Electron 27(4), 3957–3962 (2016)CrossRef B. Sun, D. Liang, X. Li, P. Chen, Nonvolatile bio-memristor fabricated with natural bio-materials from spider silk. J Mater Sci Mater Electron 27(4), 3957–3962 (2016)CrossRef
25.
Zurück zum Zitat H. Wang, B. Zhu, X. Ma, Y. Hao, X. Chen, Physically transient resistive switching memory based on silk protein. Small 12(20), 2715–2719 (2016)CrossRef H. Wang, B. Zhu, X. Ma, Y. Hao, X. Chen, Physically transient resistive switching memory based on silk protein. Small 12(20), 2715–2719 (2016)CrossRef
26.
Zurück zum Zitat F. Meng, L. Jiang, K. Zheng, C.F. Goh, S. Lim, H.H. Hng, J. Ma, F. Boey, X. Chen, Protein-Based Memristive Nanodevices. Small 7(21), 3016–3020 (2011)CrossRef F. Meng, L. Jiang, K. Zheng, C.F. Goh, S. Lim, H.H. Hng, J. Ma, F. Boey, X. Chen, Protein-Based Memristive Nanodevices. Small 7(21), 3016–3020 (2011)CrossRef
27.
Zurück zum Zitat Z.X. Lim, K.Y. Cheong, Effects of drying temperature and ethanol concentration on bipolar switching characteristics of natural Aloe Vera-based memory devices. Phys Chem Chem Phys 17(40), 26833–26853 (2015)CrossRef Z.X. Lim, K.Y. Cheong, Effects of drying temperature and ethanol concentration on bipolar switching characteristics of natural Aloe Vera-based memory devices. Phys Chem Chem Phys 17(40), 26833–26853 (2015)CrossRef
28.
Zurück zum Zitat I. Valov, R. Waser, J.R. Jameson, M.N. Kozicki, Electrochemical metallization memories—fundamentals, applications, prospects. Nanotechnol 22(25), 254003 (2011) I. Valov, R. Waser, J.R. Jameson, M.N. Kozicki, Electrochemical metallization memories—fundamentals, applications, prospects. Nanotechnol 22(25), 254003 (2011)
29.
Zurück zum Zitat H.-S.P. Wong, H.-Y. Lee, S. Yu, Y.-S. Chen, Y. Wu, P.-S. Chen, B. Lee, F.T. Chen, M.-J. Tsai, Metal–oxide RRAM. Proc IEEE 100(6), 1951–1970 (2012)CrossRef H.-S.P. Wong, H.-Y. Lee, S. Yu, Y.-S. Chen, Y. Wu, P.-S. Chen, B. Lee, F.T. Chen, M.-J. Tsai, Metal–oxide RRAM. Proc IEEE 100(6), 1951–1970 (2012)CrossRef
30.
Zurück zum Zitat A. Wedig, M. Luebben, D.-Y. Cho, M. Moors, K. Skaja, V. Rana, T. Hasegawa, K.K. Adepalli, B. Yildiz, R. Waser, Nanoscale cation motion in TaOx HfOx and TiOx memristive systems. Natl Nanotechnol 11(1), 67–74 (2016)CrossRef A. Wedig, M. Luebben, D.-Y. Cho, M. Moors, K. Skaja, V. Rana, T. Hasegawa, K.K. Adepalli, B. Yildiz, R. Waser, Nanoscale cation motion in TaOx HfOx and TiOx memristive systems. Natl Nanotechnol 11(1), 67–74 (2016)CrossRef
31.
Zurück zum Zitat M. Lübben, P. Karakolis, V. Ioannou-Sougleridis, P. Normand, P. Dimitrakis, I. Valov, Graphene-modified Interface controls transition from VCM to ECM switching modes in ta/TaOx based Memristive devices. Adv Mater 27(40), 6202–6207 (2015)CrossRef M. Lübben, P. Karakolis, V. Ioannou-Sougleridis, P. Normand, P. Dimitrakis, I. Valov, Graphene-modified Interface controls transition from VCM to ECM switching modes in ta/TaOx based Memristive devices. Adv Mater 27(40), 6202–6207 (2015)CrossRef
32.
Zurück zum Zitat H. Akinaga, H. Shima, Resistive random access memory (ReRAM) based on metal oxides. Proc IEEE 98(12), 2237–2251 (2010)CrossRef H. Akinaga, H. Shima, Resistive random access memory (ReRAM) based on metal oxides. Proc IEEE 98(12), 2237–2251 (2010)CrossRef
33.
Zurück zum Zitat H. Wang, F. Meng, Y. Cai, L. Zheng, Y. Li, Y. Liu, Y. Jiang, X. Wang, X. Chen, Sericin for resistance switching device with multilevel nonvolatile memory. Adv Mater 25(38), 5498–5503 (2013)CrossRef H. Wang, F. Meng, Y. Cai, L. Zheng, Y. Li, Y. Liu, Y. Jiang, X. Wang, X. Chen, Sericin for resistance switching device with multilevel nonvolatile memory. Adv Mater 25(38), 5498–5503 (2013)CrossRef
34.
Zurück zum Zitat C. Tan, Z. Liu, W. Huang, H. Zhang, Non-volatile resistive memory devices based on solution-processed ultrathin two-dimensional nanomaterials. Chem Soc Rev 44(9), 2615–2628 (2015)CrossRef C. Tan, Z. Liu, W. Huang, H. Zhang, Non-volatile resistive memory devices based on solution-processed ultrathin two-dimensional nanomaterials. Chem Soc Rev 44(9), 2615–2628 (2015)CrossRef
35.
Zurück zum Zitat C. Muthu, S. Agarwal, A. Vijayan, P. Hazra, K.B. Jinesh, V.C. Nair, Hybrid Perovskite Nanoparticles for High-Performance Resistive Random Access Memory Devices: Control of Operational Parameters through Chloride Doping. Adv Mater Interfaces 3(18), 1600092 (2016) C. Muthu, S. Agarwal, A. Vijayan, P. Hazra, K.B. Jinesh, V.C. Nair, Hybrid Perovskite Nanoparticles for High-Performance Resistive Random Access Memory Devices: Control of Operational Parameters through Chloride Doping. Adv Mater Interfaces 3(18), 1600092 (2016)
36.
Zurück zum Zitat J.-W. Lee, W.-J. Cho, Fabrication of resistive switching memory based on solution processed PMMA-HfO x blended thin films. Semicond Sci Technol 32(2), 025009 (2017)CrossRef J.-W. Lee, W.-J. Cho, Fabrication of resistive switching memory based on solution processed PMMA-HfO x blended thin films. Semicond Sci Technol 32(2), 025009 (2017)CrossRef
37.
Zurück zum Zitat D.I. Son, T.W. Kim, J.H. Shim, J.H. Jung, D.U. Lee, J.M. Lee, W.I. Park, W.K. Choi, Flexible organic bistable devices based on graphene embedded in an insulating poly (methyl methacrylate) polymer layer. Nano Lett 10(7), 2441–2447 (2010)CrossRef D.I. Son, T.W. Kim, J.H. Shim, J.H. Jung, D.U. Lee, J.M. Lee, W.I. Park, W.K. Choi, Flexible organic bistable devices based on graphene embedded in an insulating poly (methyl methacrylate) polymer layer. Nano Lett 10(7), 2441–2447 (2010)CrossRef
38.
Zurück zum Zitat H. Wang, Y. Du, Y. Li, B. Zhu, W.R. Leow, Y. Li, J. Pan, T. Wu, X. Chen, Configurable Resistive Switching between Memory and Threshold Characteristics for Protein-Based Devices. Adv. Funct. Mater. 25 (25), 3825-3831 (2015) H. Wang, Y. Du, Y. Li, B. Zhu, W.R. Leow, Y. Li, J. Pan, T. Wu, X. Chen, Configurable Resistive Switching between Memory and Threshold Characteristics for Protein-Based Devices. Adv. Funct. Mater. 25 (25), 3825-3831 (2015)
39.
Zurück zum Zitat V.L. Finkenstadt, Natural polysaccharides as electroactive polymers. Appl Microbiol Biotechnol 67(6), 735–745 (2005)CrossRef V.L. Finkenstadt, Natural polysaccharides as electroactive polymers. Appl Microbiol Biotechnol 67(6), 735–745 (2005)CrossRef
40.
Zurück zum Zitat Y. Wan, B. Peppley, K.A. Creber, V.T. Bui, E. Halliop, Preliminary evaluation of an alkaline chitosan-based membrane fuel cell. J Power Sources 162(1), 105–113 (2006)CrossRef Y. Wan, B. Peppley, K.A. Creber, V.T. Bui, E. Halliop, Preliminary evaluation of an alkaline chitosan-based membrane fuel cell. J Power Sources 162(1), 105–113 (2006)CrossRef
41.
Zurück zum Zitat L.Q. Zhu, C.J. Wan, L.Q. Guo, Y. Shi, Q. Wan, Artificial synapse network on inorganic proton conductor for neuromorphic systems. Nat. Commun. 5, 3158 (2014) L.Q. Zhu, C.J. Wan, L.Q. Guo, Y. Shi, Q. Wan, Artificial synapse network on inorganic proton conductor for neuromorphic systems. Nat. Commun. 5, 3158 (2014)
42.
Zurück zum Zitat C. Zhong, Y. Deng, A.F. Roudsari, A. Kapetanovic, M. Anantram, M. Rolandi, A polysaccharide bioprotonic field-effect transistor. Nat Commun 2, 476 (2011)CrossRef C. Zhong, Y. Deng, A.F. Roudsari, A. Kapetanovic, M. Anantram, M. Rolandi, A polysaccharide bioprotonic field-effect transistor. Nat Commun 2, 476 (2011)CrossRef
43.
Zurück zum Zitat E. Guibal, Interactions of metal ions with chitosan-based sorbents: A review. Sep Purif Technol 38(1), 43–74 (2004)CrossRef E. Guibal, Interactions of metal ions with chitosan-based sorbents: A review. Sep Purif Technol 38(1), 43–74 (2004)CrossRef
44.
Zurück zum Zitat C.-W. Liew, S. Ramesh, K. Ramesh, A. Arof, Preparation and characterization of lithium ion conducting ionic liquid-based biodegradable corn starch polymer electrolytes. J Solid State Electrochem 16(5), 1869–1875 (2012)CrossRef C.-W. Liew, S. Ramesh, K. Ramesh, A. Arof, Preparation and characterization of lithium ion conducting ionic liquid-based biodegradable corn starch polymer electrolytes. J Solid State Electrochem 16(5), 1869–1875 (2012)CrossRef
45.
Zurück zum Zitat A. Smits, P. Kruiskamp, J. Van Soest, J. Vliegenthart, Interaction between dry starch and plasticisers glycerol or ethylene glycol, measured by differential scanning calorimetry and solid state NMR spectroscopy. Carbohydr Polym 53(4), 409–416 (2003)CrossRef A. Smits, P. Kruiskamp, J. Van Soest, J. Vliegenthart, Interaction between dry starch and plasticisers glycerol or ethylene glycol, measured by differential scanning calorimetry and solid state NMR spectroscopy. Carbohydr Polym 53(4), 409–416 (2003)CrossRef
46.
Zurück zum Zitat M. Kumar, T. Tiwari, N. Srivastava, Electrical transport behaviour of bio-polymer electrolyte system: Potato starch+ ammonium iodide. Carbohydr Polym 88(1), 54–60 (2012)CrossRef M. Kumar, T. Tiwari, N. Srivastava, Electrical transport behaviour of bio-polymer electrolyte system: Potato starch+ ammonium iodide. Carbohydr Polym 88(1), 54–60 (2012)CrossRef
47.
Zurück zum Zitat V. Finkenstadt, J. Willett, Electroactive materials composed of starch. J Polym Environ 12(2), 43–46 (2004)CrossRef V. Finkenstadt, J. Willett, Electroactive materials composed of starch. J Polym Environ 12(2), 43–46 (2004)CrossRef
48.
Zurück zum Zitat D. Topgaard, O. Söderman, Self-diffusion in two-and three-dimensional powders of anisotropic domains: An NMR study of the diffusion of water in cellulose and starch. J Phys Chem B 106(46), 11887–11892 (2002)CrossRef D. Topgaard, O. Söderman, Self-diffusion in two-and three-dimensional powders of anisotropic domains: An NMR study of the diffusion of water in cellulose and starch. J Phys Chem B 106(46), 11887–11892 (2002)CrossRef
49.
Zurück zum Zitat S. Santacruz, C. Rivadeneira, M. Castro, Edible films based on starch and chitosan. Effect of starch source and concentration, plasticizer, surfactant's hydrophobic tail and mechanical treatment. Food Hydrocoll 49, 89–94 (2015)CrossRef S. Santacruz, C. Rivadeneira, M. Castro, Edible films based on starch and chitosan. Effect of starch source and concentration, plasticizer, surfactant's hydrophobic tail and mechanical treatment. Food Hydrocoll 49, 89–94 (2015)CrossRef
50.
Zurück zum Zitat B. Cho, S. Song, Y. Ji, T.W. Kim, T. Lee, Organic resistive memory devices: Performance enhancement, integration, and advanced architectures. Adv Funct Mater 21(15), 2806–2829 (2011)CrossRef B. Cho, S. Song, Y. Ji, T.W. Kim, T. Lee, Organic resistive memory devices: Performance enhancement, integration, and advanced architectures. Adv Funct Mater 21(15), 2806–2829 (2011)CrossRef
51.
Zurück zum Zitat B. Zeng, D. Xu, M. Tang, Y. Xiao, Y. Zhou, R. Xiong, Z. Li, Y. Zhou, Improvement of resistive switching performances via an amorphous ZrO2 layer formation in TiO2-based forming-free resistive random access memory. J Appl Phys 116(12), 124514 (2014)CrossRef B. Zeng, D. Xu, M. Tang, Y. Xiao, Y. Zhou, R. Xiong, Z. Li, Y. Zhou, Improvement of resistive switching performances via an amorphous ZrO2 layer formation in TiO2-based forming-free resistive random access memory. J Appl Phys 116(12), 124514 (2014)CrossRef
52.
Zurück zum Zitat S. Mondal, J.-L. Her, F.-H. Chen, S.-J. Shih, T.-M. Pan, Improved resistance switching characteristics in Ti-doped for resistive nonvolatile memory devices. Elect Device Lett, IEEE 33(7), 1069–1071 (2012)CrossRef S. Mondal, J.-L. Her, F.-H. Chen, S.-J. Shih, T.-M. Pan, Improved resistance switching characteristics in Ti-doped for resistive nonvolatile memory devices. Elect Device Lett, IEEE 33(7), 1069–1071 (2012)CrossRef
53.
Zurück zum Zitat P. Feng, C. Chao, Z.-s. Wang, Y.-c. Yang, Y. Jing, Z. Fei, Nonvolatile resistive switching memories-characteristics, mechanisms and challenges. Progress Natl Sci: Mater Intern 20, 1–15 (2010)CrossRef P. Feng, C. Chao, Z.-s. Wang, Y.-c. Yang, Y. Jing, Z. Fei, Nonvolatile resistive switching memories-characteristics, mechanisms and challenges. Progress Natl Sci: Mater Intern 20, 1–15 (2010)CrossRef
54.
Zurück zum Zitat D. Shang, Q. Wang, L. Chen, R. Dong, X. Li, W. Zhang, Effect of carrier trapping on the hysteretic current-voltage characteristics in Ag∕ La 0.7 Ca 0.3 MnO 3∕ Pt heterostructures. Phys Rev B 73(24), 245427 (2006)CrossRef D. Shang, Q. Wang, L. Chen, R. Dong, X. Li, W. Zhang, Effect of carrier trapping on the hysteretic current-voltage characteristics in Ag∕ La 0.7 Ca 0.3 MnO 3∕ Pt heterostructures. Phys Rev B 73(24), 245427 (2006)CrossRef
55.
Zurück zum Zitat S. Chithiravel, K. Krishnamoorthy, S. Asha, Structure-Property Relationship in Charge Transporting Behaviour of Room Temperature Liquid Crystalline Perylenebisimides. J. Mater. Chem. C, 2 (46), 9882-91 (2014) S. Chithiravel, K. Krishnamoorthy, S. Asha, Structure-Property Relationship in Charge Transporting Behaviour of Room Temperature Liquid Crystalline Perylenebisimides. J. Mater. Chem. C, (46), 9882-91 (2014)
56.
Zurück zum Zitat Y.H. Liu, L.Q. Zhu, P. Feng, Y. Shi, Q. Wan, Freestanding artificial synapses based on laterally proton-coupled transistors on chitosan membranes. Adv Mater 27(37), 5599–5604 (2015)CrossRef Y.H. Liu, L.Q. Zhu, P. Feng, Y. Shi, Q. Wan, Freestanding artificial synapses based on laterally proton-coupled transistors on chitosan membranes. Adv Mater 27(37), 5599–5604 (2015)CrossRef
57.
Zurück zum Zitat K.M. Dang, R. Yoksan, Development of thermoplastic starch blown film by incorporating plasticized chitosan. Carbohydr Polym 115, 575–581 (2015)CrossRef K.M. Dang, R. Yoksan, Development of thermoplastic starch blown film by incorporating plasticized chitosan. Carbohydr Polym 115, 575–581 (2015)CrossRef
58.
Zurück zum Zitat L. Pender, R. Fleming, Memory switching in glow discharge polymerized thin films. J Appl Phys 46(8), 3426–3431 (1975)CrossRef L. Pender, R. Fleming, Memory switching in glow discharge polymerized thin films. J Appl Phys 46(8), 3426–3431 (1975)CrossRef
59.
Zurück zum Zitat A.C. Siegel, S.T. Phillips, M.D. Dickey, N. Lu, Z. Suo, G.M. Whitesides, Foldable printed circuit boards on paper substrates. Adv Funct Mater 20(1), 28–35 (2010)CrossRef A.C. Siegel, S.T. Phillips, M.D. Dickey, N. Lu, Z. Suo, G.M. Whitesides, Foldable printed circuit boards on paper substrates. Adv Funct Mater 20(1), 28–35 (2010)CrossRef
60.
Zurück zum Zitat M. Nogi, H. Yano, Transparent nanocomposites based on cellulose produced by bacteria offer potential innovation in the electronics device industry. Adv Mater 20(10), 1849–1852 (2008)CrossRef M. Nogi, H. Yano, Transparent nanocomposites based on cellulose produced by bacteria offer potential innovation in the electronics device industry. Adv Mater 20(10), 1849–1852 (2008)CrossRef
61.
Zurück zum Zitat W.J. Hyun, O.O. Park, B.D. Chin, Foldable graphene electronic circuits based on paper substrates. Adv Mater 25(34), 4729–4734 (2013)CrossRef W.J. Hyun, O.O. Park, B.D. Chin, Foldable graphene electronic circuits based on paper substrates. Adv Mater 25(34), 4729–4734 (2013)CrossRef
62.
Zurück zum Zitat M. Nogi, N. Komoda, K. Otsuka, K. Suganuma, Foldable nanopaper antennas for origami electronics. Nano 5(10), 4395–4399 (2013) M. Nogi, N. Komoda, K. Otsuka, K. Suganuma, Foldable nanopaper antennas for origami electronics. Nano 5(10), 4395–4399 (2013)
63.
Zurück zum Zitat Y.-S. Chen, M.-Y. Hong, G.S. Huang, A protein transistor made of an antibody molecule and two gold nanoparticles. Nat Nanotechnol 7(3), 197–203 (2012)CrossRef Y.-S. Chen, M.-Y. Hong, G.S. Huang, A protein transistor made of an antibody molecule and two gold nanoparticles. Nat Nanotechnol 7(3), 197–203 (2012)CrossRef
64.
Zurück zum Zitat G. Wu, P. Feng, X. Wan, L. Zhu, Y. Shi, Q. Wan, Artificial Synaptic Devices Based on Natural Chicken Albumen Coupled Electric-Double-Layer Transistors. Sci. Rep. 6, 23578 (2016) G. Wu, P. Feng, X. Wan, L. Zhu, Y. Shi, Q. Wan, Artificial Synaptic Devices Based on Natural Chicken Albumen Coupled Electric-Double-Layer Transistors. Sci. Rep. 6, 23578 (2016)
65.
Zurück zum Zitat B.J. Klotz, D. Gawlitta, A.J. Rosenberg, J. Malda, F.P. Melchels, Gelatin-methacryloyl hydrogels: Towards biofabrication-based tissue repair. Trends Biotechnol 34(5), 394–407 (2016)CrossRef B.J. Klotz, D. Gawlitta, A.J. Rosenberg, J. Malda, F.P. Melchels, Gelatin-methacryloyl hydrogels: Towards biofabrication-based tissue repair. Trends Biotechnol 34(5), 394–407 (2016)CrossRef
66.
Zurück zum Zitat R. Soliva-Fortuny, A. Balasa, D. Knorr, O. Martín-Belloso, Effects of pulsed electric fields on bioactive compounds in foods: A review. Trends Food Sci Technol 20(11), 544–556 (2009)CrossRef R. Soliva-Fortuny, A. Balasa, D. Knorr, O. Martín-Belloso, Effects of pulsed electric fields on bioactive compounds in foods: A review. Trends Food Sci Technol 20(11), 544–556 (2009)CrossRef
67.
Zurück zum Zitat J.W. Chang, C.G. Wang, C.Y. Huang, T.D. Tsai, T.F. Guo, T.C. Wen, Chicken albumen dielectrics in organic field-effect transistors. Adv Mater 23(35), 4077–4081 (2011)CrossRef J.W. Chang, C.G. Wang, C.Y. Huang, T.D. Tsai, T.F. Guo, T.C. Wen, Chicken albumen dielectrics in organic field-effect transistors. Adv Mater 23(35), 4077–4081 (2011)CrossRef
68.
Zurück zum Zitat S.-J. Kim, D.-B. Jeon, J.-H. Park, M.-K. Ryu, J.-H. Yang, C.-S. Hwang, G.-H. Kim, S.-M. Yoon, Nonvolatile memory thin-film transistors using biodegradable chicken albumen gate insulator and oxide Semiconductor Channel on eco-friendly paper substrate. ACS Appl Mater Interfaces 7(8), 4869–4874 (2015)CrossRef S.-J. Kim, D.-B. Jeon, J.-H. Park, M.-K. Ryu, J.-H. Yang, C.-S. Hwang, G.-H. Kim, S.-M. Yoon, Nonvolatile memory thin-film transistors using biodegradable chicken albumen gate insulator and oxide Semiconductor Channel on eco-friendly paper substrate. ACS Appl Mater Interfaces 7(8), 4869–4874 (2015)CrossRef
69.
Zurück zum Zitat B. Yurke, A.J. Turberfield, A.P. Mills, F.C. Simmel, J.L. Neumann, A DNA-fuelled molecular machine made of DNA. Nature 406(6796), 605–608 (2000)CrossRef B. Yurke, A.J. Turberfield, A.P. Mills, F.C. Simmel, J.L. Neumann, A DNA-fuelled molecular machine made of DNA. Nature 406(6796), 605–608 (2000)CrossRef
70.
Zurück zum Zitat J.A. Hagen, W. Li, A. Steckl, J. Grote, Enhanced emission efficiency in organic light-emitting diodes using deoxyribonucleic acid complex as an electron blocking layer. Appl Phys Lett 88(17), 171109, 2006 J.A. Hagen, W. Li, A. Steckl, J. Grote, Enhanced emission efficiency in organic light-emitting diodes using deoxyribonucleic acid complex as an electron blocking layer. Appl Phys Lett 88(17), 171109, 2006
71.
Zurück zum Zitat S. Qin, R. Dong, X. Yan, Q. Du, A reproducible write–(read) n–erase and multilevel bio-memristor based on DNA molecule. Org. Electron., 22, 147-153 (2015) S. Qin, R. Dong, X. Yan, Q. Du, A reproducible write–(read) n–erase and multilevel bio-memristor based on DNA molecule. Org. Electron., 22, 147-153 (2015)
72.
Zurück zum Zitat E. Gale, D. Pearson, S. Kitson, A. Adamatzky, B. de Lacy Costello, The effect of changing electrode metal on solution-processed flexible titanium dioxide memristors. Mater. Chem. Phys., 162 20-30 (2015) E. Gale, D. Pearson, S. Kitson, A. Adamatzky, B. de Lacy Costello, The effect of changing electrode metal on solution-processed flexible titanium dioxide memristors. Mater. Chem. Phys., 162 20-30 (2015)
73.
Zurück zum Zitat K.J. Waldron, J.C. Rutherford, D. Ford, N.J. Robinson, Metalloproteins and metal sensing. Nature, 460 (7257), 823-830 (2009) K.J. Waldron, J.C. Rutherford, D. Ford, N.J. Robinson, Metalloproteins and metal sensing. Nature, 460 (7257), 823-830 (2009)
74.
Zurück zum Zitat I. Yamashita, K. Iwahori, S. Kumagai, Ferritin in the field of nanodevices. Biochim. Biophys Acta (BBA)-General Subjects, 1800 (8), 846-857 (2010) I. Yamashita, K. Iwahori, S. Kumagai, Ferritin in the field of nanodevices. Biochim. Biophys Acta (BBA)-General Subjects, 1800 (8), 846-857 (2010)
75.
Zurück zum Zitat F. Meng, B. Sana, Y. Li, Y. Liu, S. Lim, X. Chen, Bioengineered tunable memristor based on protein nanocage. Small, 10 (2), 277-283 (2014) F. Meng, B. Sana, Y. Li, Y. Liu, S. Lim, X. Chen, Bioengineered tunable memristor based on protein nanocage. Small, 10 (2), 277-283 (2014)
76.
Zurück zum Zitat S. Takeda, H. Yoshimura, S. Endo, T. Takahashi, K. Nagayama, Control of crystal forms of apoferritin by site-directed mutagenesis. Proteins: Structure, Function, and Bioinformatics, 23 (4), 548-556 (1995) S. Takeda, H. Yoshimura, S. Endo, T. Takahashi, K. Nagayama, Control of crystal forms of apoferritin by site-directed mutagenesis. Proteins: Structure, Function, and Bioinformatics, 23 (4), 548-556 (1995)
77.
Zurück zum Zitat C. Zhang, J. Shang, W. Xue, H. Tan, L. Pan, X. Yang, S. Guo, J. Hao, G. Liu, R.-W. Li, Convertible resistive switching characteristics between memory switching and threshold switching in a single ferritin-based memristor. Chem Commun. 52(26), 4828-4831 (2016) C. Zhang, J. Shang, W. Xue, H. Tan, L. Pan, X. Yang, S. Guo, J. Hao, G. Liu, R.-W. Li, Convertible resistive switching characteristics between memory switching and threshold switching in a single ferritin-based memristor. Chem Commun. 52(26), 4828-4831 (2016)
78.
Zurück zum Zitat B. Zhu, H. Wang, W.R. Leow, Y. Cai, X.J. Loh, M.Y. Han, X. Chen, Silk fibroin for flexible electronic devices. J. Adv. Mater. 28(22), 4250-65 (2015) B. Zhu, H. Wang, W.R. Leow, Y. Cai, X.J. Loh, M.Y. Han, X. Chen, Silk fibroin for flexible electronic devices. J. Adv. Mater. 28(22), 4250-65 (2015)
79.
Zurück zum Zitat Y.-Q. Zhang, Applications of natural silk protein sericin in biomaterials. Biotechnol Adv. 20(2), 91-100 (2002) Y.-Q. Zhang, Applications of natural silk protein sericin in biomaterials. Biotechnol Adv. 20(2), 91-100 (2002)
80.
Zurück zum Zitat C. Jiang, X. Wang, R. Gunawidjaja, Y.H. Lin, M.K. Gupta, D.L. Kaplan, R.R. Naik, V.V. Tsukruk, Mechanical properties of robust ultrathin silk fibroin films. Adv. Funct. Mater. 17(13), 2229-2237 (2007) C. Jiang, X. Wang, R. Gunawidjaja, Y.H. Lin, M.K. Gupta, D.L. Kaplan, R.R. Naik, V.V. Tsukruk, Mechanical properties of robust ultrathin silk fibroin films. Adv. Funct. Mater. 17(13), 2229-2237 (2007)
81.
Zurück zum Zitat S.W. Hwang, S.K. Kang, X. Huang, M.A. Brenckle, F.G. Omenetto, J. Rogers, Materials for programmed, functional transformation in transient electronic systems. Adv. Mater. 27(1), 47-52 (2015) S.W. Hwang, S.K. Kang, X. Huang, M.A. Brenckle, F.G. Omenetto, J. Rogers, Materials for programmed, functional transformation in transient electronic systems. Adv. Mater. 27(1), 47-52 (2015)
82.
Zurück zum Zitat R.M. Touyz, Transient receptor potential melastatin 6 and 7 channels, magnesium transport, and vascular biology: implications in hypertension. Am J Phys Heart Circ Phys. 294 (3), H1103-H1118 (2008) R.M. Touyz, Transient receptor potential melastatin 6 and 7 channels, magnesium transport, and vascular biology: implications in hypertension. Am J Phys Heart Circ Phys. 294 (3), H1103-H1118 (2008)
83.
Zurück zum Zitat D.N. Rockwood, R.C. Preda, T. Yücel, X. Wang, M.L. Lovett, D.L. Kaplan, Materials fabrication from Bombyx mori silk fibroin. Nature protocols. 6(10), 1612-1631 (2011) D.N. Rockwood, R.C. Preda, T. Yücel, X. Wang, M.L. Lovett, D.L. Kaplan, Materials fabrication from Bombyx mori silk fibroin. Nature protocols. 6(10), 1612-1631 (2011)
84.
Zurück zum Zitat Y. Ji, D.F. Zeigler, D.S. Lee, H. Choi, A.K.-Y. Jen, H.C. Ko, T.-W. Kim, Flexible and twistable non-volatile memory cell array with all-organic one diode–one resistor architecture. Nature Commun, 4, 2707 (2013) Y. Ji, D.F. Zeigler, D.S. Lee, H. Choi, A.K.-Y. Jen, H.C. Ko, T.-W. Kim, Flexible and twistable non-volatile memory cell array with all-organic one diode–one resistor architecture. Nature Commun, 4, 2707 (2013)
85.
Zurück zum Zitat M.S. White, M. Kaltenbrunner, E.D. Głowacki, K. Gutnichenko, G. Kettlgruber, I. Graz, S. Aazou, C. Ulbricht, D.A. Egbe, M.C. Miron, Ultrathin, highly flexible and stretchable PLEDs. Nature Photonics. 7(10), 811-816 (2013) M.S. White, M. Kaltenbrunner, E.D. Głowacki, K. Gutnichenko, G. Kettlgruber, I. Graz, S. Aazou, C. Ulbricht, D.A. Egbe, M.C. Miron, Ultrathin, highly flexible and stretchable PLEDs. Nature Photonics. 7(10), 811-816 (2013)
86.
Zurück zum Zitat M. Kaltenbrunner, T. Sekitani, J. Reeder, T. Yokota, K. Kuribara, T. Tokuhara, M. Drack, R. Schwödiauer, I. Graz, S. Bauer-Gogonea, An ultra-lightweight design for imperceptible plastic electronics. Nature. 499(7459), 458-463 (2013) M. Kaltenbrunner, T. Sekitani, J. Reeder, T. Yokota, K. Kuribara, T. Tokuhara, M. Drack, R. Schwödiauer, I. Graz, S. Bauer-Gogonea, An ultra-lightweight design for imperceptible plastic electronics. Nature. 499(7459), 458-463 (2013)
87.
Zurück zum Zitat M. Kaltenbrunner, M.S. White, E.D. Głowacki, T. Sekitani, T. Someya, N.S. Sariciftci, S. Bauer, Ultrathin and lightweight organic solar cells with high flexibility. Nature Commun. 3, 770 (2012) M. Kaltenbrunner, M.S. White, E.D. Głowacki, T. Sekitani, T. Someya, N.S. Sariciftci, S. Bauer, Ultrathin and lightweight organic solar cells with high flexibility. Nature Commun. 3, 770 (2012)
88.
Zurück zum Zitat S.-K. Kang, R.K. Murphy, S.-W. Hwang, S.M. Lee, D.V. Harburg, N.A. Krueger, J. Shin, P. Gamble, H. Cheng, S. Yu, Bioresorbable silicon electronic sensors for the brain. Nature. 530(7588), 71-76 (2016) S.-K. Kang, R.K. Murphy, S.-W. Hwang, S.M. Lee, D.V. Harburg, N.A. Krueger, J. Shin, P. Gamble, H. Cheng, S. Yu, Bioresorbable silicon electronic sensors for the brain. Nature. 530(7588), 71-76 (2016)
89.
Zurück zum Zitat Y. Cai, J. Tan, L. YeFan, M. Lin, R. Huang, A flexible organic resistance memory device for wearable biomedical applications. Nanotechnol. 27(27), 275206 (2016) Y. Cai, J. Tan, L. YeFan, M. Lin, R. Huang, A flexible organic resistance memory device for wearable biomedical applications. Nanotechnol. 27(27), 275206 (2016)
90.
Zurück zum Zitat B. Hu, X. Zhu, X. Chen, L. Pan, S. Peng, Y. Wu, J. Shang, G. Liu, Q. Yan, R.-W. Li, A multilevel memory based on proton-doped polyazomethine with an excellent uniformity in resistive switching. J. Am. Chem. Soc. 134 (42), 17408-17411 (2012) B. Hu, X. Zhu, X. Chen, L. Pan, S. Peng, Y. Wu, J. Shang, G. Liu, Q. Yan, R.-W. Li, A multilevel memory based on proton-doped polyazomethine with an excellent uniformity in resistive switching. J. Am. Chem. Soc. 134 (42), 17408-17411 (2012)
91.
Zurück zum Zitat S.-Y. Wang, D.-Y. Lee, T.-Y. Huang, J.-W. Wu, T.-Y. Tseng, Controllable oxygen vacancies to enhance resistive switching performance in a ZrO2-based RRAM with embedded Mo layer. Nanotechnol, 21 (49), 495201 (2010) S.-Y. Wang, D.-Y. Lee, T.-Y. Huang, J.-W. Wu, T.-Y. Tseng, Controllable oxygen vacancies to enhance resistive switching performance in a ZrO2-based RRAM with embedded Mo layer. Nanotechnol, 21 (49), 495201 (2010)
92.
Zurück zum Zitat S. Gao, F. Zeng, C. Chen, G. Tang, Y. Lin, Z. Zheng, C. Song, F. Pan, Conductance quantization in a Ag filament-based polymer resistive memory. Nanotechnology. 24(33), 335201 (2013) S. Gao, F. Zeng, C. Chen, G. Tang, Y. Lin, Z. Zheng, C. Song, F. Pan, Conductance quantization in a Ag filament-based polymer resistive memory. Nanotechnology. 24(33), 335201 (2013)
Metadaten
Titel
Resistive switching memory using biomaterials
verfasst von
Niloufar Raeis-Hosseini
Jang-Sik Lee
Publikationsdatum
30.09.2017
Verlag
Springer US
Erschienen in
Journal of Electroceramics / Ausgabe 1-4/2017
Print ISSN: 1385-3449
Elektronische ISSN: 1573-8663
DOI
https://doi.org/10.1007/s10832-017-0104-z

Weitere Artikel der Ausgabe 1-4/2017

Journal of Electroceramics 1-4/2017 Zur Ausgabe

Neuer Inhalt