Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

01.03.2015 | Original Paper | Ausgabe 1/2015

International Journal on Document Analysis and Recognition (IJDAR) 1/2015

Resolution enhancement of textual images via multiple coupled dictionaries and adaptive sparse representation selection

Zeitschrift:
International Journal on Document Analysis and Recognition (IJDAR) > Ausgabe 1/2015
Autoren:
Rim Walha, Fadoua Drira, Frank Lebourgeois, Christophe Garcia, Adel M. Alimi

Abstract

Resolution enhancement has become a valuable research topic due to the rapidly growing need for high-quality images in various applications. Various resolution enhancement approaches have been successfully applied on natural images. Nevertheless, their direct application to textual images is not efficient enough due to the specificities that distinguish these particular images from natural images. The use of insufficient resolution introduces substantial loss of details which can make a text unreadable by humans and unrecognizable by OCR systems. To address these issues, a sparse coding-based approach is proposed to enhance the resolution of a textual image. Three major contributions are presented in this paper: (1) Multiple coupled dictionaries are learned from a clustered database and selected adaptively for a better reconstruction. (2) An automatic process is developed to collect the training database, which contains writing patterns extracted from high-quality character images. (3) A new local feature descriptor well suited for writing specificities is proposed for the clustering of the training database. The performance of these propositions is evaluated qualitatively and quantitatively on various types of low-resolution textual images. Significant improvements in visual quality and character recognition rates are achieved using the proposed approach, confirmed by a detailed comparative study with state-of-the-art upscaling approaches.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 1/2015

International Journal on Document Analysis and Recognition (IJDAR) 1/2015 Zur Ausgabe

Premium Partner

    Bildnachweise