Skip to main content
Erschienen in: Optical and Quantum Electronics 5/2019

01.05.2019

Resonant peak splitting in finite periodic superlattices with an unit cell of two barriers and two wells on monolayer graphene

verfasst von: H. Z. Xu, S. Feng, Y. Zhang

Erschienen in: Optical and Quantum Electronics | Ausgabe 5/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The general expressions for transmission probability and resonant peaks in one-dimensional N-periods graphene superlattice with unit cell of two barriers and two wells are analytically derived, and two types of resonant peaks are obtained: (1) the periodicity induced resonant peaks splitting of (N − 1)-fold as N increases; and (2) the resonant peak through a unit cell unchanged as N varies. As the two-barriers in unit cell become asymmetric, the resonance transmission probability of unit cell becomes imperfect (T1 < 1), which drops quickly with the unit asymmetry increases. Thus, the unit cell related resonant peak could only be observed in superlattices with less unit cell asymmetry of a few of period numbers. With the period increases, the unit related resonant peak disappears and only periodicity induced (N − 1)-fold splitting remains. The splitting rule is further confirmed by the conductance and noise versus the incident energy and the misunderstandings in publication domain is cleared up.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Barbier, M., Vasilopoulos, P., Peeters, F.M.: Extra Dirac points in the energy spectrum for superlattices on single-layer graphene. Phys. Rev. B 81, 075438 (2010)ADSCrossRef Barbier, M., Vasilopoulos, P., Peeters, F.M.: Extra Dirac points in the energy spectrum for superlattices on single-layer graphene. Phys. Rev. B 81, 075438 (2010)ADSCrossRef
Zurück zum Zitat Büttiker, M.: Four-terminal phase-coherent conductance. Phys. Rev. Lett. 57, 1761–1764 (1986)ADSCrossRef Büttiker, M.: Four-terminal phase-coherent conductance. Phys. Rev. Lett. 57, 1761–1764 (1986)ADSCrossRef
Zurück zum Zitat Guo, Y., Gu, B.L., Li, Z.Q., Yu, J.Z., Kawazoe, Y.: Resonance splitting effect and wave-vector filtering effect in magnetic superlattices. J. Appl. Phys. 83, 4545–4547 (1998a)ADSCrossRef Guo, Y., Gu, B.L., Li, Z.Q., Yu, J.Z., Kawazoe, Y.: Resonance splitting effect and wave-vector filtering effect in magnetic superlattices. J. Appl. Phys. 83, 4545–4547 (1998a)ADSCrossRef
Zurück zum Zitat Guo, Y., Gu, B.L., Li, Z.Q., Sun, Q., Kawazoe, Y.: Resonance splitting effect in semiconductor superlattices. Eur. Phys. J. B 3, 257–261 (1998b)ADSCrossRef Guo, Y., Gu, B.L., Li, Z.Q., Sun, Q., Kawazoe, Y.: Resonance splitting effect in semiconductor superlattices. Eur. Phys. J. B 3, 257–261 (1998b)ADSCrossRef
Zurück zum Zitat Huo, Q.H., Wang, R.Z., Yan, H.: Electron transport through magnetic superlattices with asymmetric double-barrier units in graphene. Chin. Phys. Lett. 29, 077307 (2012a)ADSCrossRef Huo, Q.H., Wang, R.Z., Yan, H.: Electron transport through magnetic superlattices with asymmetric double-barrier units in graphene. Chin. Phys. Lett. 29, 077307 (2012a)ADSCrossRef
Zurück zum Zitat Huo, Q.H., Wang, R.Z., Yan, H.: Giant magnetoresistance effect in graphene with asymmetrical magnetic superlattices. Appl. Phys. Lett. 101, 152404 (2012b)ADSCrossRef Huo, Q.H., Wang, R.Z., Yan, H.: Giant magnetoresistance effect in graphene with asymmetrical magnetic superlattices. Appl. Phys. Lett. 101, 152404 (2012b)ADSCrossRef
Zurück zum Zitat Kamal, A., Choubabi, E.B., Jellal, A.: Band structures of symmetrical graphene superlattice with cells of three regions. Eur. Phys. J. B 91, 91 (2018)ADSCrossRef Kamal, A., Choubabi, E.B., Jellal, A.: Band structures of symmetrical graphene superlattice with cells of three regions. Eur. Phys. J. B 91, 91 (2018)ADSCrossRef
Zurück zum Zitat Kuiri, M., Gupta, G.K., Ronen, Y., Das, T., Das, A.: Large Landau-level splitting in a tunable one-dimensional graphene superlattice probed by magnetocapacitance measurements. Phys. Rev. B 98, 035418 (2018)ADSCrossRef Kuiri, M., Gupta, G.K., Ronen, Y., Das, T., Das, A.: Large Landau-level splitting in a tunable one-dimensional graphene superlattice probed by magnetocapacitance measurements. Phys. Rev. B 98, 035418 (2018)ADSCrossRef
Zurück zum Zitat Lin, X., Wang, H.L., Pan, H., Xu, H.Z.: Gap opening and tuning in single-layer graphene with combined electric and magnetic field modulation. Chin. Phys. B 20, 047302 (2011)ADSCrossRef Lin, X., Wang, H.L., Pan, H., Xu, H.Z.: Gap opening and tuning in single-layer graphene with combined electric and magnetic field modulation. Chin. Phys. B 20, 047302 (2011)ADSCrossRef
Zurück zum Zitat Liu, X.-W., Stamp, A.P.: Resonance splitting effect in multibarrier tunneling. Phys. Rev. B 47(24), 16605–16607 (1993)ADSCrossRef Liu, X.-W., Stamp, A.P.: Resonance splitting effect in multibarrier tunneling. Phys. Rev. B 47(24), 16605–16607 (1993)ADSCrossRef
Zurück zum Zitat Liu, X.-W., Stamp, A.P.: Resonant tunneling and resonance splitting: the inherent properties of superlattices. Phys. Rev. B 50(3), 1588–1594 (1994)ADSCrossRef Liu, X.-W., Stamp, A.P.: Resonant tunneling and resonance splitting: the inherent properties of superlattices. Phys. Rev. B 50(3), 1588–1594 (1994)ADSCrossRef
Zurück zum Zitat Lu, W.T., Wu, Y.L., Ye, C.Z., Jiang, H., Li, W.: Resonant peak splitting through magnetic Kronig-Penney superlattices in graphene. Phys. B 407, 4735–4737 (2012a)ADSCrossRef Lu, W.T., Wu, Y.L., Ye, C.Z., Jiang, H., Li, W.: Resonant peak splitting through magnetic Kronig-Penney superlattices in graphene. Phys. B 407, 4735–4737 (2012a)ADSCrossRef
Zurück zum Zitat Lu, W.T., Li, W., Wang, Y.L., Ye, C.Z., Jiang, H.: Resonance splitting effect through magnetic superlattices in graphene. J. Appl. Phys. 112, 083712 (2012b)ADSCrossRef Lu, W.T., Li, W., Wang, Y.L., Ye, C.Z., Jiang, H.: Resonance splitting effect through magnetic superlattices in graphene. J. Appl. Phys. 112, 083712 (2012b)ADSCrossRef
Zurück zum Zitat Lu, W.T., Xu, C.T., Ye, C.Z., Jiang, H., Pan, H.Z., Wang, Y.L.: Electron tunneling of graphene modulated by realistic magnetic barriers. Phys. Lett. A 379, 1906–1911 (2015)ADSCrossRef Lu, W.T., Xu, C.T., Ye, C.Z., Jiang, H., Pan, H.Z., Wang, Y.L.: Electron tunneling of graphene modulated by realistic magnetic barriers. Phys. Lett. A 379, 1906–1911 (2015)ADSCrossRef
Zurück zum Zitat Peeters, F.M., Vasilopoulos, P.: New method of controlling the gaps between the minibands of a superlattice. Appl. Phys. Lett. 55, 1106–1108 (1989)ADSCrossRef Peeters, F.M., Vasilopoulos, P.: New method of controlling the gaps between the minibands of a superlattice. Appl. Phys. Lett. 55, 1106–1108 (1989)ADSCrossRef
Zurück zum Zitat Pereyra, P., Castillo, E.: Theory of finite periodic systems: general expressions and various simple and illustrative examples. Phys. Rev. B 65(20), 205120 (2002)ADSCrossRef Pereyra, P., Castillo, E.: Theory of finite periodic systems: general expressions and various simple and illustrative examples. Phys. Rev. B 65(20), 205120 (2002)ADSCrossRef
Zurück zum Zitat Pham, C.H., Nguyen, V.L.: Tunneling through finite graphene superlattices: resonance splitting effect. J. Phys. Condens. Matter 27(9), 095302 (2015)ADSCrossRef Pham, C.H., Nguyen, V.L.: Tunneling through finite graphene superlattices: resonance splitting effect. J. Phys. Condens. Matter 27(9), 095302 (2015)ADSCrossRef
Zurück zum Zitat Sprung, D.W.L., Vanderspek, L.W.A., van Dijk, W., Martorell, J., Pacher, C.: Biperiodic superlattices and the transparent state. Phys. Rev. B 77, 035333 (2008)ADSCrossRef Sprung, D.W.L., Vanderspek, L.W.A., van Dijk, W., Martorell, J., Pacher, C.: Biperiodic superlattices and the transparent state. Phys. Rev. B 77, 035333 (2008)ADSCrossRef
Zurück zum Zitat Tsu, R., Esaki, L.: Tunneling in a finite superlattice. Appl. Phys. Lett. 22, 562–564 (1973)ADSCrossRef Tsu, R., Esaki, L.: Tunneling in a finite superlattice. Appl. Phys. Lett. 22, 562–564 (1973)ADSCrossRef
Zurück zum Zitat Tworzydlo, J., Trauzettel, B., Titov, M., Rycerz, A., Beenakker, C.W.J.: Sub-Poissonian shot noise in graphene. Phys. Rev. Lett. 96, 246802 (2006)ADSCrossRef Tworzydlo, J., Trauzettel, B., Titov, M., Rycerz, A., Beenakker, C.W.J.: Sub-Poissonian shot noise in graphene. Phys. Rev. Lett. 96, 246802 (2006)ADSCrossRef
Zurück zum Zitat Vasilopoulos, P., Peeters, F.M., Aitelhabti, D.: Quantum tunability of superlattice minibands. Phys. Rev. B 41, 10021–10027 (1990)ADSCrossRef Vasilopoulos, P., Peeters, F.M., Aitelhabti, D.: Quantum tunability of superlattice minibands. Phys. Rev. B 41, 10021–10027 (1990)ADSCrossRef
Zurück zum Zitat Vezzetti, D.J., Cahay, M.: Transmission resonances in finite, repeated structures. J. Phys. D 19(4), L53–L55 (1986)ADSCrossRef Vezzetti, D.J., Cahay, M.: Transmission resonances in finite, repeated structures. J. Phys. D 19(4), L53–L55 (1986)ADSCrossRef
Zurück zum Zitat Wang, R.Z., Yan, X.H.: Resonant peak splitting for ballistic conductance in two-dimensional electron gas under electromagnetic modulation. Chin. Phys. Lett. 17, 598–600 (2000)ADSCrossRef Wang, R.Z., Yan, X.H.: Resonant peak splitting for ballistic conductance in two-dimensional electron gas under electromagnetic modulation. Chin. Phys. Lett. 17, 598–600 (2000)ADSCrossRef
Zurück zum Zitat Wang, L.Y., Xu, H.Z., Wang, H.L., Pan, H., Zhang, Y.P., Zhang, G.L.: Conductance spin-polarization filter in monolayer graphene with combined magneto-electric modulation. Physic E 61, 185–190 (2014)ADSCrossRef Wang, L.Y., Xu, H.Z., Wang, H.L., Pan, H., Zhang, Y.P., Zhang, G.L.: Conductance spin-polarization filter in monolayer graphene with combined magneto-electric modulation. Physic E 61, 185–190 (2014)ADSCrossRef
Zurück zum Zitat Wu, Q.S., Zhang, S.N., Yang, S.J.: Transport of the graphene electrons through a magnetic superlattice. J. Phys. Condens. Matter 20, 485210 (2008)CrossRef Wu, Q.S., Zhang, S.N., Yang, S.J.: Transport of the graphene electrons through a magnetic superlattice. J. Phys. Condens. Matter 20, 485210 (2008)CrossRef
Zurück zum Zitat Xu, Y., He, Y., Yang, Y.F.: Resonant peak splitting in graphene superlattices with one-dimensional periodic potentials. Appl. Phys. A 115, 721–729 (2014)ADSCrossRef Xu, Y., He, Y., Yang, Y.F.: Resonant peak splitting in graphene superlattices with one-dimensional periodic potentials. Appl. Phys. A 115, 721–729 (2014)ADSCrossRef
Zurück zum Zitat Xu, H.Z., Feng, S., Zhang, Y.P., Wang, J.L., Zhang, S.C.: Resonant tunneling though an asymmetrical two-magnetic-barrier structure on single layer graphene. Opt. Quant. Electron. 49, 250 (2017)CrossRef Xu, H.Z., Feng, S., Zhang, Y.P., Wang, J.L., Zhang, S.C.: Resonant tunneling though an asymmetrical two-magnetic-barrier structure on single layer graphene. Opt. Quant. Electron. 49, 250 (2017)CrossRef
Zurück zum Zitat Yamamoto, H., Kanie, Y., Sano, H., Taniguchi, K.: Resonant tunneling with mass variation in rectangular n‐fold barrier structures. Phys. Stat. Sol. B169, K17–K21 (1992)ADSCrossRef Yamamoto, H., Kanie, Y., Sano, H., Taniguchi, K.: Resonant tunneling with mass variation in rectangular n‐fold barrier structures. Phys. Stat. Sol. B169, K17–K21 (1992)ADSCrossRef
Zurück zum Zitat Zeng, Z.Y., Zhang, L.D.: Resonance split of ballistic conductance peaks in electric and magnetic superlattices. Eur. Phys. J. B 16, 389–392 (2000)ADSCrossRef Zeng, Z.Y., Zhang, L.D.: Resonance split of ballistic conductance peaks in electric and magnetic superlattices. Eur. Phys. J. B 16, 389–392 (2000)ADSCrossRef
Zurück zum Zitat Zeng, Z.Y., Zhang, L.D., Yan, X.H., You, J.Q.: Resonant peak splitting for ballistic conductance in magnetic superlattices. Phys. Rev. B 60, 1515–1518 (1999)ADSCrossRef Zeng, Z.Y., Zhang, L.D., Yan, X.H., You, J.Q.: Resonant peak splitting for ballistic conductance in magnetic superlattices. Phys. Rev. B 60, 1515–1518 (1999)ADSCrossRef
Zurück zum Zitat Zeng, Z.Y., Zhang, L.D., Yan, X.H., You, J.Q.: Erratum: Resonant peak splitting for ballistic conductance in magnetic superlattices. Phys. Rev. B 63(20), 209901 (2001)ADSCrossRef Zeng, Z.Y., Zhang, L.D., Yan, X.H., You, J.Q.: Erratum: Resonant peak splitting for ballistic conductance in magnetic superlattices. Phys. Rev. B 63(20), 209901 (2001)ADSCrossRef
Metadaten
Titel
Resonant peak splitting in finite periodic superlattices with an unit cell of two barriers and two wells on monolayer graphene
verfasst von
H. Z. Xu
S. Feng
Y. Zhang
Publikationsdatum
01.05.2019
Verlag
Springer US
Erschienen in
Optical and Quantum Electronics / Ausgabe 5/2019
Print ISSN: 0306-8919
Elektronische ISSN: 1572-817X
DOI
https://doi.org/10.1007/s11082-019-1873-1

Weitere Artikel der Ausgabe 5/2019

Optical and Quantum Electronics 5/2019 Zur Ausgabe

Neuer Inhalt