Skip to main content

2017 | OriginalPaper | Buchkapitel

Resource Allocation for Cooperative D2D Communication Networks

verfasst von : Shankhanaad Mallick, Roya Arab Loodaricheh, K. N. R. Surya Vara Prasad, Vijay Bhargava

Erschienen in: 5G Mobile Communications

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Device-to-device (D2D) communications technology is currently being investigated as a potential enabler for the fifth generation (5G) communication networks. Significant performance gains are achievable in a cooperative D2D framework, wherein the user equipments (UEs) cooperate with each other to enable a variety of low-latency proximity-based services or to establish indirect communication links with the Base Station (BS) whenever direct service coverage is not possible. This chapter is focused on the throughput gains achievable in the latter scenario, i.e., when few UEs perform relaying operations to provide indirect service coverage to other UEs. In this direction, resource allocation problems are formulated for a variety of system models operating under the orthogonal frequency division multiple access (OFDMA) cellular or cognitive radio (CR) access architectures. The performance of mobile D2D relaying under different scenarios is evaluated. The system models are designed to study the benefits of incorporating additional capabilities at the devices, such as packet storage (using buffers), energy-harvesting, and cognitive spectrum access within the cooperative D2D framework. Depending on the system model, efficient algorithms are proposed to obtain optimal power allocation, subcarrier assignment, subcarrier pairing, and relay-UE selection policies which maximize the system throughput under a variety of system-dependant constraints. Simulation results demonstrate the effectiveness of our proposed algorithms and the performance improvement of mobile D2D-relaying networks over conventional networks.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
We refer to a relay-UE and destination-UE combination as a D2D pair if a D2D communication link can be established between them.
 
Literatur
1.
Zurück zum Zitat S. Mumtaz, J. Rodriguez, Smart Device to Smart Device Communication (Springer, Cham, 2014)CrossRef S. Mumtaz, J. Rodriguez, Smart Device to Smart Device Communication (Springer, Cham, 2014)CrossRef
2.
Zurück zum Zitat L. Song, D. Niyato, Z. Han, E. Hossain, Wireless Device-to-Device Communications and Networks (Cambridge University Press, New York, NY, 2015)CrossRef L. Song, D. Niyato, Z. Han, E. Hossain, Wireless Device-to-Device Communications and Networks (Cambridge University Press, New York, NY, 2015)CrossRef
3.
Zurück zum Zitat K.W. Choi, Z. Han, Device-to-device discovery for proximity-based service in LTE-advanced system IEEE J. Sel. Areas Commun. 33 (1), 55–66 (2015) K.W. Choi, Z. Han, Device-to-device discovery for proximity-based service in LTE-advanced system IEEE J. Sel. Areas Commun. 33 (1), 55–66 (2015)
4.
Zurück zum Zitat L. Lei, Z. Zhong, C. Lin, X. Shen, Operator controlled device-to-device communications in LTE-advanced networks. IEEE Wirel. Commun. 19 (3), 96–104 (2012)CrossRef L. Lei, Z. Zhong, C. Lin, X. Shen, Operator controlled device-to-device communications in LTE-advanced networks. IEEE Wirel. Commun. 19 (3), 96–104 (2012)CrossRef
5.
Zurück zum Zitat L. Wei, R. Q. Hu, Y. Qian, G. Wu, Enable device-to-device communications underlaying cellular networks: challenges and research aspects. IEEE Commun. Mag. 52 (6) 90–96 (2014)CrossRef L. Wei, R. Q. Hu, Y. Qian, G. Wu, Enable device-to-device communications underlaying cellular networks: challenges and research aspects. IEEE Commun. Mag. 52 (6) 90–96 (2014)CrossRef
6.
Zurück zum Zitat L. Song, D. Niyato, Z. Han, E. Hossain, Game-theoretic resource allocation methods for device-to-device (D2D) communication. IEEE Wirel. Commun. 21 (3), 136–144 (2014)CrossRef L. Song, D. Niyato, Z. Han, E. Hossain, Game-theoretic resource allocation methods for device-to-device (D2D) communication. IEEE Wirel. Commun. 21 (3), 136–144 (2014)CrossRef
7.
Zurück zum Zitat M.N. Tehrani, M. Uysal, H. Yanikomeroglu, Device-to-device communication in 5G cellular networks: challenges, solutions, and future directions. IEEE Commun. Mag. 52 (5), 86–92 (2014)CrossRef M.N. Tehrani, M. Uysal, H. Yanikomeroglu, Device-to-device communication in 5G cellular networks: challenges, solutions, and future directions. IEEE Commun. Mag. 52 (5), 86–92 (2014)CrossRef
8.
Zurück zum Zitat A. Asadi, Q. Wang, V. Mancuso, A survey on device-to-device communication in cellular networks. IEEE Commun. Surv. Tutorials 16 (4), 1801–1819 (2014)CrossRef A. Asadi, Q. Wang, V. Mancuso, A survey on device-to-device communication in cellular networks. IEEE Commun. Surv. Tutorials 16 (4), 1801–1819 (2014)CrossRef
9.
Zurück zum Zitat S. Bi, C. Ho, R. Zhang, Wireless powered communication: opportunities and challenges. IEEE Commun. Mag. 53 (4), 117–125 (2015)CrossRef S. Bi, C. Ho, R. Zhang, Wireless powered communication: opportunities and challenges. IEEE Commun. Mag. 53 (4), 117–125 (2015)CrossRef
10.
Zurück zum Zitat S. Berger, M. Kuhn, A. Wittneben et al., Recent advances in amplify-and-forward two-hop relaying. IEEE Commun. Mag. 47 (7), 50–56 (2009)CrossRef S. Berger, M. Kuhn, A. Wittneben et al., Recent advances in amplify-and-forward two-hop relaying. IEEE Commun. Mag. 47 (7), 50–56 (2009)CrossRef
11.
Zurück zum Zitat K.T.K Cheung, S. Yang, L. Hanzo, Achieving maximum energy-efficiency in multi-relay OFDMA cellular networks: a fractional programming approach. IEEE Trans. Commun. 61 (7), 2746–2757 (2013) K.T.K Cheung, S. Yang, L. Hanzo, Achieving maximum energy-efficiency in multi-relay OFDMA cellular networks: a fractional programming approach. IEEE Trans. Commun. 61 (7), 2746–2757 (2013)
12.
Zurück zum Zitat D.W.K. Ng, R. Schober, Cross-layer scheduling for OFDMA amplify-and-forward relay networks. IEEE Trans. Veh. Technol. 59 (3), 1443–1458 (2010)CrossRef D.W.K. Ng, R. Schober, Cross-layer scheduling for OFDMA amplify-and-forward relay networks. IEEE Trans. Veh. Technol. 59 (3), 1443–1458 (2010)CrossRef
13.
Zurück zum Zitat M.S. Alam, J.W. Mark, X. Shen, Relay selection and resource allocation for multi-user cooperative OFDMA networks. IEEE Trans. Wirel. Commun. 12 (5), 2193–2205 (2013)CrossRef M.S. Alam, J.W. Mark, X. Shen, Relay selection and resource allocation for multi-user cooperative OFDMA networks. IEEE Trans. Wirel. Commun. 12 (5), 2193–2205 (2013)CrossRef
14.
Zurück zum Zitat S. Boyd, L. Vandenberghe, Convex Optimization (Cambridge University Press, New York, NY, 2004)CrossRefMATH S. Boyd, L. Vandenberghe, Convex Optimization (Cambridge University Press, New York, NY, 2004)CrossRefMATH
15.
Zurück zum Zitat S.O. Krumke, Integer Programming. Polyhedra and Algorithms. Draft, January 4, 2006 S.O. Krumke, Integer Programming. Polyhedra and Algorithms. Draft, January 4, 2006
16.
Zurück zum Zitat R. Arab Loodaricheh, S. Mallick, V.K. Bhargava, Energy efficient resource allocation for OFDMA cellular networks with user cooperation and QoS provisioning. IEEE Trans. Wirel. Commun. 13 (11), 6132–6146 (2014)CrossRef R. Arab Loodaricheh, S. Mallick, V.K. Bhargava, Energy efficient resource allocation for OFDMA cellular networks with user cooperation and QoS provisioning. IEEE Trans. Wirel. Commun. 13 (11), 6132–6146 (2014)CrossRef
17.
Zurück zum Zitat S. Boyd, L. Xiao, A. Mutapcic, Subgradient methods, in Notes for EE392o Stanford University Autumn, 2003–2004 S. Boyd, L. Xiao, A. Mutapcic, Subgradient methods, in Notes for EE392o Stanford University Autumn, 2003–2004
18.
Zurück zum Zitat W. Dang, M. Tao, H. Mu, J. Huang, Subcarrier-pair based resource allocation for cooperative multi-relay OFDM systems. IEEE Trans. Wirel. Commun. 9 (5), 1640–1649 (2010)CrossRef W. Dang, M. Tao, H. Mu, J. Huang, Subcarrier-pair based resource allocation for cooperative multi-relay OFDM systems. IEEE Trans. Wirel. Commun. 9 (5), 1640–1649 (2010)CrossRef
19.
Zurück zum Zitat H. Zhu, J. Wang, Device-to-device communication in cellular networks with fractional frequency reuse, in Proceedings of 2014 IEEE ICC, pp. 5503–5507 H. Zhu, J. Wang, Device-to-device communication in cellular networks with fractional frequency reuse, in Proceedings of 2014 IEEE ICC, pp. 5503–5507
20.
Zurück zum Zitat L. Liu, R. Zhang, K.C. Chua, Wireless information transfer with opportunistic energy harvesting. IEEE Trans. Wirel. Commun. 12 (1), 288–300 (2013)CrossRef L. Liu, R. Zhang, K.C. Chua, Wireless information transfer with opportunistic energy harvesting. IEEE Trans. Wirel. Commun. 12 (1), 288–300 (2013)CrossRef
21.
Zurück zum Zitat D.W.K. Ng, E.S. Lo, R. Schober, Wireless information and power transfer: energy efficiency optimization in OFDMA systems. IEEE Trans. Wirel. Commun. 12, 6352–6370 (2013)CrossRef D.W.K. Ng, E.S. Lo, R. Schober, Wireless information and power transfer: energy efficiency optimization in OFDMA systems. IEEE Trans. Wirel. Commun. 12, 6352–6370 (2013)CrossRef
22.
Zurück zum Zitat T. Wang, A. Cano, B. Giannakis et al., High-performance cooperative demodulation with decode-and-forward relays. IEEE Trans. Commun. 55 (7), 1427–1438 (2007)CrossRef T. Wang, A. Cano, B. Giannakis et al., High-performance cooperative demodulation with decode-and-forward relays. IEEE Trans. Commun. 55 (7), 1427–1438 (2007)CrossRef
23.
Zurück zum Zitat D.P. Bertsekas, Dynamic Programming and Optimal Control. vol. 1, no. 2 (Athena Scientific, Belmont, MA, 1995) D.P. Bertsekas, Dynamic Programming and Optimal Control. vol. 1, no. 2 (Athena Scientific, Belmont, MA, 1995)
24.
Zurück zum Zitat R. Arab Loodaricheh, S. Mallick, V.K. Bhargava, Resource allocation for OFDMA systems with selective relaying and energy harvesting, in Proceedings of 2014 IEEE VTC (Fall), pp. 1–5 R. Arab Loodaricheh, S. Mallick, V.K. Bhargava, Resource allocation for OFDMA systems with selective relaying and energy harvesting, in Proceedings of 2014 IEEE VTC (Fall), pp. 1–5
26.
Zurück zum Zitat G. Zhao, C. Yang, G.Y. Li, D. Li, A. Soong, Power and channel allocation for cooperative relay in cognitive radio networks. IEEE J. Sel. Top. Sign. Proces. 5 (1), 151–159 (2011)CrossRef G. Zhao, C. Yang, G.Y. Li, D. Li, A. Soong, Power and channel allocation for cooperative relay in cognitive radio networks. IEEE J. Sel. Top. Sign. Proces. 5 (1), 151–159 (2011)CrossRef
27.
Zurück zum Zitat X. Gong, W. Yuan, W. Liu, W. Cheng, S. Wang, A cooperative relay scheme for secondary communication in cognitive radio networks, in Proceedings of 2008 IEEE Globecom, pp. 1–6 X. Gong, W. Yuan, W. Liu, W. Cheng, S. Wang, A cooperative relay scheme for secondary communication in cognitive radio networks, in Proceedings of 2008 IEEE Globecom, pp. 1–6
28.
Zurück zum Zitat C. Sun, K.B. Letaief, User cooperation in heterogeneous cognitive radio networks with interference reduction, in Proceedings of 2008 IEEE ICC, pp. 3193–3197 C. Sun, K.B. Letaief, User cooperation in heterogeneous cognitive radio networks with interference reduction, in Proceedings of 2008 IEEE ICC, pp. 3193–3197
29.
Zurück zum Zitat D. López-Pérez, A. Valcarce, G. Roche, J. Zhang, OFDMA femtocells: a roadmap on interference avoidance. IEEE Commun. Mag. 47 (9), 41–48 (2009)CrossRef D. López-Pérez, A. Valcarce, G. Roche, J. Zhang, OFDMA femtocells: a roadmap on interference avoidance. IEEE Commun. Mag. 47 (9), 41–48 (2009)CrossRef
30.
Zurück zum Zitat I. Demirdogen, I. Guvenc, H. Arslan, A simulation study of performance trade-offs in open access femtocell networks, in Proceedings of 2010 IEEE PIMRC, pp. 151–156 I. Demirdogen, I. Guvenc, H. Arslan, A simulation study of performance trade-offs in open access femtocell networks, in Proceedings of 2010 IEEE PIMRC, pp. 151–156
31.
Zurück zum Zitat S. Kadloor, R. Adve, Relay selection and power allocation in cooperative cellular networks. IEEE Trans. Wirel. Commun. 9 (5), 1676–1685 (2010)CrossRef S. Kadloor, R. Adve, Relay selection and power allocation in cooperative cellular networks. IEEE Trans. Wirel. Commun. 9 (5), 1676–1685 (2010)CrossRef
32.
Zurück zum Zitat T. Al-Khasib, M. Shenouda, L. Lampe, Dynamic spectrum management for multiple-antenna cognitive radio systems: design with imperfect CSI. IEEE Trans. Wirel. Commun. 10 (9), 2850–2859 (2011)CrossRef T. Al-Khasib, M. Shenouda, L. Lampe, Dynamic spectrum management for multiple-antenna cognitive radio systems: design with imperfect CSI. IEEE Trans. Wirel. Commun. 10 (9), 2850–2859 (2011)CrossRef
33.
Zurück zum Zitat J.N. Laneman, D.N.C. Tse, G.W. Wornell, Cooperative diversity in wireless networks: efficient protocols and outage behavior. IEEE Trans. Inf. Theory 50 (12), 3062–3080 (2004)MathSciNetCrossRefMATH J.N. Laneman, D.N.C. Tse, G.W. Wornell, Cooperative diversity in wireless networks: efficient protocols and outage behavior. IEEE Trans. Inf. Theory 50 (12), 3062–3080 (2004)MathSciNetCrossRefMATH
34.
Zurück zum Zitat M. Medard, The effect upon channel capacity in wireless communications of perfect and imperfect knowledge of the channel. IEEE Trans. Inf. Theory 46 (3), 933–946 (2000)CrossRefMATH M. Medard, The effect upon channel capacity in wireless communications of perfect and imperfect knowledge of the channel. IEEE Trans. Inf. Theory 46 (3), 933–946 (2000)CrossRefMATH
35.
Zurück zum Zitat G. Zheng, S. Ma, K.-K. Wong, T.-S. Ng, Robust beamforming in cognitive radio. IEEE Trans. Wirel. Commun. 9 (2), 570–576 (2010)CrossRef G. Zheng, S. Ma, K.-K. Wong, T.-S. Ng, Robust beamforming in cognitive radio. IEEE Trans. Wirel. Commun. 9 (2), 570–576 (2010)CrossRef
36.
Zurück zum Zitat Z.K.M. Ho, V.K.N. Lau, R.S.K. Cheng, Closed loop cross layer scheduling for goodput maximization in frequency selective environment with no CSIT, in Proceedings of 2007 IEEE WCNC, 299–303 Z.K.M. Ho, V.K.N. Lau, R.S.K. Cheng, Closed loop cross layer scheduling for goodput maximization in frequency selective environment with no CSIT, in Proceedings of 2007 IEEE WCNC, 299–303
37.
Zurück zum Zitat D. I. Kim, L. B. Le, E. Hossain, Joint rate and power allocation for cognitive radios in dynamic spectrum access environment. IEEE Trans. Wirel. Commun. 7 (12), 5517–5527 (2008) D. I. Kim, L. B. Le, E. Hossain, Joint rate and power allocation for cognitive radios in dynamic spectrum access environment. IEEE Trans. Wirel. Commun. 7 (12), 5517–5527 (2008)
38.
Zurück zum Zitat L. Zhang, Y.-C. Liang, Y. Xin, H. Poor, Robust cognitive beamforming with partial channel state information. IEEE Trans. Wirel. Commun. 8 (8), 4143–4153 (2009)CrossRef L. Zhang, Y.-C. Liang, Y. Xin, H. Poor, Robust cognitive beamforming with partial channel state information. IEEE Trans. Wirel. Commun. 8 (8), 4143–4153 (2009)CrossRef
39.
Zurück zum Zitat S. Mallick, M.M. Rashid, V.K. Bhargava, Joint relay selection and power allocation for decode-and-forward cellular relay network with channel uncertainty. IEEE Trans. Wirel. Commun. 11 (10), 3496–3508 (2012)CrossRef S. Mallick, M.M. Rashid, V.K. Bhargava, Joint relay selection and power allocation for decode-and-forward cellular relay network with channel uncertainty. IEEE Trans. Wirel. Commun. 11 (10), 3496–3508 (2012)CrossRef
40.
Zurück zum Zitat G. Zheng, K.-K. Wong, B. Otterston, Robust cognitive beamforming with bounded channel uncertainties. IEEE Trans. Signal Process. 57 (12), 4871–4881 (2009)MathSciNetCrossRef G. Zheng, K.-K. Wong, B. Otterston, Robust cognitive beamforming with bounded channel uncertainties. IEEE Trans. Signal Process. 57 (12), 4871–4881 (2009)MathSciNetCrossRef
41.
Zurück zum Zitat S. Mallick, R. Devarajan, R. Arab Loodaricheh, V.K. Bhargava, Robust resource optimization for cooperative cognitive radio networks with imperfect CSI. IEEE Trans. Wirel. Commun. 14 (2), 907–920 (2015)CrossRef S. Mallick, R. Devarajan, R. Arab Loodaricheh, V.K. Bhargava, Robust resource optimization for cooperative cognitive radio networks with imperfect CSI. IEEE Trans. Wirel. Commun. 14 (2), 907–920 (2015)CrossRef
42.
Zurück zum Zitat P.-J. Chung, H. Du, J. Gondzio, A probabilistic constraint approach for robust transmit beamforming with imperfect channel information. IEEE Trans. Signal Process. 59 (6), 2773–2782 (2011)MathSciNetCrossRef P.-J. Chung, H. Du, J. Gondzio, A probabilistic constraint approach for robust transmit beamforming with imperfect channel information. IEEE Trans. Signal Process. 59 (6), 2773–2782 (2011)MathSciNetCrossRef
44.
Zurück zum Zitat I. Hammerstrom, A. Wittneben, On the optimal power allocation for nonregenerative OFDM relay links, in Proc. 2006 IEEE ICC, pp. 4463–4468 I. Hammerstrom, A. Wittneben, On the optimal power allocation for nonregenerative OFDM relay links, in Proc. 2006 IEEE ICC, pp. 4463–4468
45.
Zurück zum Zitat M. Choi, J. Park, S. Choi, Simplified power allocation scheme for cognitive multi-node relay networks. IEEE Trans. Wirel. Commun. 11 (6), 2008–2012 (2012)CrossRef M. Choi, J. Park, S. Choi, Simplified power allocation scheme for cognitive multi-node relay networks. IEEE Trans. Wirel. Commun. 11 (6), 2008–2012 (2012)CrossRef
46.
Zurück zum Zitat M. Shaat, F. Bader, Asymptotically optimal resource allocation in OFDM-based cognitive networks with multiple relays. IEEE Trans. Wirel. Commun. 11 (3), 892–897 (2012)CrossRef M. Shaat, F. Bader, Asymptotically optimal resource allocation in OFDM-based cognitive networks with multiple relays. IEEE Trans. Wirel. Commun. 11 (3), 892–897 (2012)CrossRef
Metadaten
Titel
Resource Allocation for Cooperative D2D Communication Networks
verfasst von
Shankhanaad Mallick
Roya Arab Loodaricheh
K. N. R. Surya Vara Prasad
Vijay Bhargava
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-34208-5_20

Neuer Inhalt